Что такое геоморфология

геоморфология

наука о рельефе земной поверхности (суши, дна океанов и морей). Изучает его морфологию, происхождение, историю развития, современную динамику. Объединяет геологические и географические знания. Осн. идеи геоморфологии, касающиеся процесса рельефообразования, заключаются в том, что земная поверхность, с одной стороны, представляет собой верхнюю поверхность земной коры, а с другой – является поверхностью взаимодействия внутренних структур и процессов, происходящих во внешних оболочках – атмосфере, гидросфере, криосфере и биосфере. Рельеф создаётся и развивается в результате взаимодействия внутренних (эндогенных) и внешних (экзогенных) сил и процессов. Внутриземные массы в процессе тектонических движений в земной коре и вулканизма подаются снизу к поверхности планеты, формируя её первичные неровности. Попадая в сферу воздействия внешних процессов (температурные изменения, течения и волнения воды, ветер, влияние растений, животных, человека), поданные снизу породы разрушаются (см. Выветривание) и подвергаются сносу, переносу и отложению (см. Аккумуляция). Отложенные наносы со временем погружаются в недра земной коры и в более глубинные сферы планеты, где перерабатываются и снова поднимаются к поверхности, с тем чтобы начать новый виток вечного круговорота веществ, в результате чего изменяется рельеф поверхности планеты.
Как самостоятельная дисциплина геоморфология оформилась в кон. 19 – нач. 20 в. Имеет множество научных направлений. Это структурная геоморфология, изучающая связи рельефа с геологическим строением и движениями земной коры; историческая (эволюционная) геоморфология и палеогеоморфология, объектом которых является история развития рельефа; климатическая геоморфология, исследующая связи рельефа с климатом и природными ландшафтами; экологическая геоморфология, изучающая взаимные связи между рельефом и средой жизни организмов, в т. ч. человека; эстетическая геоморфология, оценивающая красоту и привлекательность геоморфологических объектов и ландшафтов; поисковая геоморфология, разрабатывающая геоморфологические методы поисков полезных ископаемых; инженерная геоморфология, изучающая взаимодействие инженерной деятельности человека с рельефом и процессами его образования; агрогеоморфология, выявляющая геоморфологические последствия с.-х. освоения территорий и разрабатывающая меры к устранению нежелательных последствий (напр., приёмы борьбы с эрозией почв). Кроме того, в особые направления выделяются планетарная геоморфология, изучающая глобальные закономерности строения и развития рельефа Земли и других планет; региональная геоморфология, исследующая геоморфологические особенности отдельных регионов; геоморфология дна океанов и морей; геоморфология берегов. Как пограничная наука между геологией и географией геоморфология, опираясь на достижения и методы этих наук, разрабатывает собственные методы: анализ морфологической структуры рельефа (морфометрия), геоморфологическое картографирование, в т. ч. с помощью фотосъёмки с самолётов и из космоса. Современная геоморфология – одна из интенсивно развивающихся наук о Земле. Её данные используются при поисках полезных ископаемых, проектировании дорог и сооружений.

Гидрология 

Гидроло́гия – наука, изучающая природные воды Земли и процессы, в них происходящие.

Термин «гидрология» образован от греч. Yδρoλoγια (др.-греч. ὕδωρ «вода» иλoγoς «слово», «учение»). Однако гидрология занимается исследованием не особенностей воды как таковой (физического вещества или химического соединения), а изучением распространения природных вод на Земле, их режима и происходящих в них процессов.

Термин «гидрология» впервые появился в 1694 г. в книге, содержащей «начала учения о водах», изданной Эбергардом МельхиоромЭбергард Мельхиор (? – после 1739), немецкий натуралист, живший на рубеже XVII-XVIII вв. Автор серии книг о термальных источниках Германии во Франкфурте-на-Майне. В действительно самостоятельную науку гидрология оформилась лишь в 1920–1930-х гг.

Гидрология как часть физической географии входит в комплекс наук о Земле.

Разделы гидрологии

Гидрологию подразделяют прежде всего на крупные разделы по предмету, направленности и методам исследований. Это – гидрология водных объектов, изучающая закономерности гидрологических процессов и явлений в водных объектах разных типов; гидрография, занимающаяся описанием конкретных водных объектов; прикладная гидрология, разрабатывающая методы расчёта и прогноза различных гидрологических характеристик, а также приёмы и методы практического использования гидрологических знаний в разных областях экономики; гидрометрия, разрабатывающая методы измерений и наблюдений при изучении природных вод; специальные разделы гидрологии, такие, как физика природных вод (или гидрофизика), динамика вод (например, динамика русловых потоков, динамика морских течений), химия природных вод (или гидрохимия).

По объектам исследования в гидрологии выделяют три большие части: гидрологию суши, или точнее гидрологию поверхностных вод суши (часто называемую просто гидрологией), изучающую водные объекты суши – реки, озёра, водохранилища, болота, ледники; гидрологию океанов и морей (синоним – физическая океанология), занимающуюся изучением морских гидрологических процессов; гидрологию подземных вод, изучающую воды, находящиеся в верхней части земной коры.

Гидрология суши, в свою очередь, по объектам исследования подразделяется на гидрологию рек (устаревшее название – потамология от греч. ποταμός «река»), гидрологию озёр (иногда называемую также лимнологией от греч. λίμνη «озеро» или озероведением), гидрологию болот и гидрологию ледников.

Болота как физико-географические объекты (геоморфологические, биологические, а также и гидрологические процессы в болотах) изучает также комплексная наука «болотоведение». Гидрология болот может считаться одновременно частями гидрологии суши и болотоведения. То же касается ледников. Как природные объекты их изучает раздел физической географии, называемый «гляциологией», включающий помимо гидрологических также геологические, геоморфологические, климатические и другие исследования. Поэтому гидрологию ледников можно считать одновременно и частью гидрологии суши, и частью гляциологии. Гидрологию подземных вод иногда отождествляют с самостоятельной наукой «гидрогеологией» – разделом геологии. Однако гидрогеология изучает не только закономерности распространения, залегания и движения подземных вод, но и их роль в геологических процессах, а также условия и возможности хозяйственного использования подземных вод (разведки и добычи). Гидрогеология кроме того решает разнообразные задачи по инженерно-геологическому обеспечению строительства, мелиорации, разработки месторождений полезных ископаемых и др. Поэтому гидрология подземных вод также может считаться как частью гидрологии суши, так и частью гидрогеологии.

В последнее время в качестве самостоятельных разделов гидрологии стали выделять гидрологию водохранилищ, использующую методы гидрологии рек и гидрологии озёр, а также гидрологию устьев рек, пограничную между гидрологией рек и океанологией.

Отдельные разделы, выделяемые в гидрологии по предмету направленности и методам исследований, так же, как и гидрология в целом, допускают подразделение по объектам изучения. Так, в рамках гидрографии можно выделить гидрографию рек, гидрографию озёр, гидрографию океанов и морей, или региональную океанологию и т. д. Прикладная гидрология также может быть подразделена на прикладную океанологию (например, промысловую) и инженерную гидрологию суши. Прикладную (инженерную) гидрологию суши, в свою очередь, иногда подразделяют на самостоятельные разделы применительно и к рекам, и к озёрам – гидрологические расчёты и гидрологические прогнозы. В прикладной гидрологии иногда отдельно выделяют, например, мелиоративную гидрологию, ирригационную гидрологию и др. Гидрометрия также может относиться и к морям, и к рекам, и к озёрам. В специальных разделах гидрологии могут быть выделены подразделы, относящиеся к водным объектам разных типов, например физика океана, химия океана; комплекс дисциплин, имеющих отношение к физике речного потока, – динамика русловых потоков, теория русловых процессов, а также гидрофизика рек, гидрофизика озёр; гидрохимия рек, гидрохимия озёр и т. д. Специальные разделы гидрологии входят одновременно разделами в физику и химию.

Научные и практические задачи гидрологии

Основные научные задачи гидрологии состоят в исследовании закономерностей процессов в водных объектах, выявлении их взаимосвязей с процессами, протекающими в атмосфере, литосфере и биосфере с учётом влияния хозяйственной деятельности. Особое значение при этом имеет установление закономерностей круговорота воды на земном шаре, географического распределения различных гидрологических характеристик в глобальном масштабе и рассмотрение гидрологических процессов как важнейшего фактора в формировании географической оболочки Земли.

Важной научной задачей гидрологии является также изучении режима и гидрологических процессов в отдельных речных бассейнах, океанах, морях, озёрах, водохранилищах.

Одной из наиболее актуальных и сложных задач гидрологии в последнее время стали исследование влияния современного потепления климата на изменения в гидросфере планеты (Мировом океане, ледниках, водах суши) и разработка их прогноза.

Помимо упомянутых научных задач перед гидрологией стоят и важные практические задачи, например, обеспечение гидрологическими данными различных отраслей экономики: промышленности и энергетики, сельского, водного, рыбного, коммунального хозяйства, водного транспорта и др., разработка научных основ рационального использования водных объектов и их охраны, а также мероприятий по предотвращению негативного воздействия вод на территории и социально-экономические объекты.

Связь гидрологии с другими науками

Гидрология, изучающая природные воды, относится к наукам географическими тесно связана с другими физико-географическими науками – метеорологией и климатологией, геоморфологией, гляциологией, картографией и т.д. Эта связь отражает объективно существующее единство природы, проявляющееся во взаимосвязи и взаимодействии всех компонентов природной среды.

Связана гидрология и с другими естественными науками – геологией, биологией, почвоведением, геохимией.

Гидрология не может продуктивно развиваться без опоры на фундаментальные науки – физику, химию, математику.

К гидрологии тесно также примыкают такие разделы физики, как гидрофизика, гидромеханика, гидродинамика, гидравлика, термодинамика. Гидрохимия как раздел гидрологии широко использует законы взаимодействия химических веществ и методы химического анализа их состава. Таким образом, гидрология связана с физикой и химией через специальные разделы гидрологии.

В последнее время проявляется тенденция к «экологизации» многих естественных наук. Но поскольку содержание и задачи экологии как междисциплинарного научного направления ещё до конца не сформулированы, не вполне определилось и место гидрологии в комплексе наук экологического цикла. В настоящее время активно разрабатываются основы геоэкологии – комплексной науки, призванной изучать взаимодействие геосфер (т. е. как живой, так и неживой природы) между собой и с человеческим обществом. В рамках геоэкологии начала развиваться гидроэкология (водная или аквальная экология), изучающая экологию водных объектов (рек, озёр, морей и др.). Эта комплексная наука должна изучать водные экосистемы – совокупность трёх взаимодействующих компонентов – водной среды, водных организмов и человеческого общества. Место гидрологии как науки в гидроэкологии вполне определённо – это изучение абиотических компонентов водной среды и их взаимодействия с водной биотой и деятельностью человека. Имеет право на существование и такая специфическая часть гидрологии как экологическая гидрология (или экогидрология). Под экологической гидрологией можно понимать те разделы гидрологии, которые имеют непосредственную экологическую направленность и ориентированы на изучение взаимодействия водных объектов и водной среды с водной биотой и человеческой деятельностью.

Методы гидрологии

Современная гидрология располагает большим арсеналом взаимодополняющих друг друга методов познания гидрологических процессов. Важнейшее место в гидрологии занимают методы полевых исследований (экспедиционные и стационарные). Исторически это был первый способ познания законов природы, но и в наши дни без использования или учёта результатов полевых работ не обходится ни одно гидрологическое исследование.

В последнее время стали широко применяться так называемые нетрадиционные дистанционные методы наблюдения и измерения с помощью локаторов, аэрокосмические съёмки и наблюдения, автономные регистрирующие системы (автоматические гидрологические посты на реках, буйковые станции в океанах).

Широко использует гидрология и методы экспериментальных исследований. Различают эксперименты в лаборатории и эксперименты в природе. В первом случае на специальных лабораторных установках проводят эксперименты в условиях, полностью контролируемых экспериментатором. Во втором – наблюдения проводятся на небольших участках природных объектов, специально выбранных для детальных исследований. Человек не в состоянии регулировать проявление природных процессов, но благодаря специальному выбору ряда внешних условий (например, характера почвы, растительности, крутизны склонов и т. д.), применению специального оборудования и особых методов (включая изотопные) и тщательным наблюдениям может создать условия для исследований, невозможные при обычных полевых работах.

Краткие сведения из истории развития гидрологии

Первые примитивные сведения о гидрологическом режиме водных объектов получили люди, поселившиеся на берегах рек, озёр, морей.

В развитие гидрологических знаний свой вклад внесли путешественники, географы, историки, философы Древней Греции и Древнего Рима такие как Гераклит, Геродот, Платон, Аристотель. Интересные гидрологические наблюдения проводил Леонардо да Винчи, выдающийся представитель эпохи Возрождения. Гидрологическими процессами и явлениями интересовались известные европейские физики и математики Декарт, Галлей, Бернулли и другие.

Начало гидрологических наблюдений в России относится к XV–XVI вв.: в записях русских летописцев сохранились сведения о наводнениях, паводках, замерзании и вскрытии рек. Много данных о реках и озёрах приведено в «Книге Большому Чертежу» – приложении к одной из первых карт России (1552). В 1773 г. эти сведения были переизданы Н.И. Новиковым под заглавием «Древняя Российская Идрография, содержащая описание Московского государства рек, протоков, озёр, кладезей и какие по ним города и урочища и на каком они расстоянии».

В XVII в. начались наблюдения за уровнем воды на р. Москве. При Петре I проводились первые гидрологические изыскания на Дону, Оке, Волге с целью использования этих рек для судоходства. В 1715 г. были организованы постоянные наблюдения за режимом р. Невы у Петропавловской крепости. В изучение рек заметный вклад внесли русские землепроходцы и географы XVIII в.

В XIX в. изыскания, связанные с улучшением судоходных условий на реках России, были расширены. Крупные гидрографические работы на реках провела созданная в 1875 г. при Министерстве путей сообщения навигационно-описная комиссия. В 1881 г. были впервые опубликованы данные наблюдений за уровнем воды на реках.

Ценные материалы по гидрографии дали экспедиции П.П. Семёнова-Тян-Шанского и Н.М. Пржевальского. В конце XIX в. в России были опубликованы крупные многих известных естествоиспытателей, заложившие основы учения о реках.

Широкое развитие гидрологических изысканий и исследований в нашей стране началось в 1920-х гг. Эти исследования были направлены на комплексное использование водных ресурсов страны (не только для судоходства, но и для гидроэнергетики и орошения). В 1919 г. был создан Российский гидрологический институт, который в 1926 г. преобразуется в ныне существующий Государственный гидрологический институт (ГГИ) в Санкт-Петербурге. В 1920 г. был принят план электрификации страны (план ГОЭЛРО), выполнение которого потребовало проведения широких гидрологических исследований.

В предвоенный период усилиями российских учёных были разработаны теоретические основы гидрологии суши. Таким образом, гидрология суши как самостоятельная наука оформилась в Советском Союзе в 1920–1930-е гг.

Во время Великой Отечественной войны гидрологи обеспечивали действующую армию гидрологической информацией о водном и ледовом режиме рек и озёр.

В послевоенные годы восстановление и дальнейшее развитие народного хозяйства страны потребовали существенного расширения гидрологических изысканий и исследований. Ведутся гидрологические работы для крупного гидроэнергетического строительства на Днепре и Волге, мелиоративных мероприятий на юге Европейской территории Союза и в Средней Азии, улучшения судоходных условий на Волге и сибирских реках.

После распада СССР руководство наблюдениями и исследованиями в области гидрологии в Российской Федерации было возложено на Федеральную службу по гидрометеорологии и мониторингу окружающей среды (Росгидромет). Росгидромету подчинены региональные управления гидрометеослужбы (УГМС), а им – местные центры по гидрометеорологии (ЦГМС) и разветвлённая сеть гидрометобсерваторий, гидрометстанций и гидрологических постов.

Практическое значение гидрологии

Независимо от того, идёт ли речь о разных водопользователях, эксплуатация водных ресурсов, оценка возможности и эффективности их использования невозможны без научного обоснования и соответствующих исследований. Поэтому в рациональном освоении водных ресурсов важная роль принадлежит гидрологии. Гидрологи обеспечивают водопользователей данными о количестве и качестве воды, о пространственно-временных изменениях гидрологических характеристик.

Промышленность и коммунальное хозяйство заинтересованы в оценке как количества, так и качества потребляемой воды, орошаемое земледелие – в данных о режиме водного объекта, из которого осуществляется водозабор.

Любое строительство на берегах рек (набережных, причалов и др.), а также сооружение мостов, переходов трубопроводов и линий высоковольтных электропередач (ЛЭП) через реки требует знания об уровнях воды, ледовых явлениях, скоростях течения, русловых процессах (размыве или намыве дна и берегов). Любое строительство на берегах озёр и морей или в прибрежной зоне, например, сооружение свайных платформ для добычи нефти на шельфе, невозможно без учёта данных о волнении, ледовых явлениях и других характеристиках режима. Предоставить такие данные проектировщикам и строителям могут только гидрологи.

Речной водный транспорт нуждается в сведениях об уровнях воды, скоростях течения, ледовых явлениях, русловых процессах. Заметим, что изучение режима многих рек России началось именно в связи с их использованием для судоходства. Морскому транспорту требуются данные о морских течениях и волнении. Океанологи нередко снабжают моряков сведениями о так называемых «рекомендуемых курсах», позволяющих пересечь океан наиболее быстро и безопасно.

Гидроэнергетика нуждается в данных о современных и ожидаемых колебаниях стока воды, рыбное хозяйство – в сведениях о физико-химических характеристиках воды (температуре, солёности, содержании растворённого кислорода и т. д.).

Гидрологические исследования необходимы не только для удовлетворения запросов водопользователей. Велика их роль и в решении такой проблемы, как защита населённых пунктов и земель от наводнений (причем не только на реках, но и в приморских районах). Особую актуальность приобретают исследования и прогнозы наводнений на реках, вызванных дождевыми паводками или ледяными заторами, а в устьях рек и в прибрежных морских районах – штормовыми нагонами и волнами цунами.

Велика роль гидрологов в разработке кратко-, средне- и долгосрочных прогнозов состояния водных объектов (рек, озёр, морей).

Важна роль гидрологии и в решении проблем охраны природы, при разработке мероприятий по защите водных объектов от истощения и загрязнения. Гидрологи ведут контроль за состоянием качества воды, разрабатывают приёмы прогноза распространения загрязняющих веществ, например, «нефтяных пятен» после аварий танкеров на реках и в морях.

В.Н. Михайлов, М.В. Михайлова

Геоморфологические условия

1234

РЕФЕРАТ

В отчете по практике рассмотрены: общие сведения о районе работ, геологические, геокриологические условия района работ, методика снегомерной съемки и наблюдения за температурным режимом горных пород.

Отчет включает в себя … глав

В первой..

Ключевые слова: термокарст, НПС (нефтеперекачивающая станция), сезонное промерзание, сезонное оттаивание, термоскважина, термокоса, нефтепровод, многолетнемерзлые породы (ММП).

Введение

При прохождении производственной практики целью работы являлось закрепление теоретических знаний по геокриологии, освоить методику мерзлотных исследований, а также ознакомиться с мерзлотно-геологическим строением участка работ.

Работы включали в себя:

Снегомерные наблюдения на участках: НПС-14 и ВСТО МН на 1700-1719 км;

замеры температур в термоскважинах;

описание котлованов.

В результате работы приобретены практические навыки выполнения различных видов работ.

ХАРАКТЕРИСТИКА СТЕПЕНИ ИЗУЧЕННОСТИ

ПРИРОДНЫХ УСЛОВИЙ

Исследуемый участок магистрального нефтепровода в административном отношении, находится на территории Республики Саха (Якутия).

Полоса трассы в 1955-63 годах была покрыта государственной геологической съёмкой масштаба 1:200000, по результатам которой в 1978 году была составлена геологическая карта Якутии.

Первые кондиционные инженерно-геологические исследования начали

проводиться в связи со строительством БАМа (участок Тында-Беркакит), Амуро-Якутской автодорожной магистрали и новой железнодорожной линии Беркакит — Томмот-Якутск.

Планомерные региональные гидрогеологические, геокриологические и инженерно-геологические исследования в зоне БАМа проводились в период с 1974 до 1984 года организациями МинГео СССР.

В 1975-76 годах институтом «Мосгипротранс» проведены инженерно-

геологические изыскания под строительство железной дороги Тында-Беркакит.

В период с 1982 по 1986 годы институтом «Мосгипротранс» выполнялись изыскания под строительство новой железной дороги Беркакит-Томмот-Якутск (на участке Беркакит — Томмот). По результатам этих изысканий составлена геокриологическая карта всего участка (от Беркакита до Томмота) масштаба 1:25000, основанная на материалах математической обработки данных многолетних наблюдений метеостанции «Чульман» и на результатах дешифрирования.

В 1992 году Тындинской мерзлотной станцией проводится инженерно-

геокриологическое обследование ж.д. линии Тында — Беркакит с целью выявления причин деформаций земляного полотна. В результате проведённых исследований выявлены участки, поражённые опасными геологическими процессами, и разработаны рекомендации по противодеформационным мероприятиям.

В последующие годы (1990-2002 гг.) ООО «Проекттрансстрой» проведены инженерно-геологические изыскания по обследованию железнодорожного полотна ж.д.

В 2012 г. ОАО «НИПИИ ЭТ «ЭНЕРГОТРАНСПРОЕКТ» были выполнены работы по предварительному обследованию участков ТС ВСТО-1: 1690,00 км — 1690,69 км и 1717,50 км – 1720, 50 км. «Отчет о проведении предварительных обследований участка ТС ВСТО-1 с термокарстом 1690,00 км – 1690,69 км». «Отчет о проведении предварительных обследований участка ТС ВСТО-1 с термокарстом 1717,50 км – 1720, 50 км».

В 2013 г. ООО «НИИ ТНН» и ОАО «Гипротрубопровод» провели рекогносцировочные обследования участков термокарста на эксплуатационном отрезке 1646 – 1723 км. Результаты обследования отражены в таблице 1.

ОБЩИЕ СВЕДЕНИЯ О РАЙОНЕ РАБОТ

Участки МН ВСТО-1 с термокарстом «1690,00» км – «1712,40» км, НПС-14 расположен на территории Ленского улуса Республики Саха Якутия в левобережье р. Лены.

Категория сложности инженерно-геологических условий — III.

Условия проходимости местности — III категория (плохая).

Геоморфологические условия

В геоморфологическом отношении участок геологического обследования расположен в пределах Приленского плато Среднесибирского плоскогорья. Это район средневысотного структурно-денудационного плато.

Наиболее широкое распространение на площади имеют эрозионно-денудационный и эрозионно-аккумулятивный рельеф. Поверхность плато возвышается на 340-510 м над уровнем моря. В пределах его выделяются денудационные поверхности с абсолютными отметками 420- 510 м, 380-420 м и 300-380 м, которые ограничены друг от друга отчетливо выраженными в рельефе уступами.

Денудационные поверхности сформированы в мезо-кайнозое под действием преимущественно эрозионно-денудационных процессов. Современные очертания рельефа плато в значительной мере предопределены структурными особенностями и литологическим составом горных пород.

На рассматриваемой территории различаются следующие морфологические типы рельефа:

а) плато грядово-увалистое на линейно-складчатых породах кембрия

(абсолютные отметки 420-510 м);

б) плато слабоволнистое на линейно-складчатых породах кембрия

(абсолютные отметки 300-420 м).

Грядово-увалистый рельеф образует обширные пространства в пределах развития слабо дислоцированных карбонатных пород кембрия севернее долины р. Лены. Гряды и увалы, характерные для данного уровня, имеют северо-восточное направление.

Протяженность их 10-20 км, ширина 20-40 м. Гряды и увалы, очевидно, формировались под воздействием избирательной денудации и фиксируют складчатые структуры площади.

Этот рельеф характеризует самый верхний денудационный уровень и отделяется от нижерасположенного уровня рельефа денудационными уступами высотой 30-60 м и крутизной 15-20°. Наиболее отчетливо выражены его участки, имеющие северо-восточное протяжение, совпадающее с направлением складчатых структур.

Слабоволнистое плато на линейно-складчатых карбонатно-глинистых породах кембрия с абсолютными отметками 300-420 м. Это плато сохранилось в виде разрозненных пониженных участков среди грядово-увалистого рельефа.

Современная гидрографическая сеть района имеет сетчатый рисунок. Преобладают участки долин северо-восточного и северо-северо-западного простирания. Распределение речной сети, а также морфология речных долин обусловлены геолого-структурными особенностями района и трещиноватостью карбонатных пород кембрия.

Климатические условия

Климат рассматриваемого района относительно суровый и континентальный, отличается умеренно-теплым летом и суровой, относительно малоснежной зимой.

Радиационный баланс имеет отрицательное значение с октября по март. Осадки выпадают преимущественно летом, в 4-5 раз больше, чем зимой, которая в два раза продолжительнее лета. Годовая сумма осадков составляет 200-300 мм.

Зимой вся территория охлаждена, что способствует развитию с октября по март устойчивого мощного антициклона (Азиатский максимум). Он начинает формироваться в октябре, достигает максимума в январе, а разрушается с марта. Господствуют холодные континентальные арктические и умеренные воздушные массы. Погода преимущественно ясная, безветренная, с низкой температурой. Средняя температура января составляет от минус 25.2°С до минус 34°С. Иногда морозы достигают минус 62°С Зимой осадки изредка

приносятся циклонами, приходящими с запада. Длительное пребывание малоподвижных антициклонов над территорией обусловливает сильное выхолаживание поверхности и приземного слоя воздуха, возникновение мощных температурных инверсий.

Переход от зимы к весне обычно резкий при значительной разнице низких ночных и высоких дневных температур воздуха. Весна еще и самое ветреное время года с непостоянными, меняющими направление ветрами. Изрядно испарившийся в течение солнечного марта снег сходит быстро, за исключением тенистых возвышенных мест. Но постоянные ночные заморозки тормозят оттаивание почв, что исключает их увлажнение талой снеговой водой, быстро скатывающейся в реки.

Летом в связи с прогреванием над территорией устанавливается пониженное давление. Сюда устремляются воздушные массы с Северного Ледовитого океана, усиливается западный перенос. Но холодный арктический воздух, поступая на сушу, очень быстро трансформируется (прогревается и удаляется от состояния насыщения) в континентальный воздух умеренных широт. Средняя температура июля составляет 12-16º.

Циклональная деятельность резко повышает количество осадков. За 2-3 месяца их выпадает больше половины годовой суммы, максимум в июле – первой половине августа.

Осень, как и весна, очень коротка и наступает сразу, переходя от теплых летних суток к постоянным ночным заморозкам. В начале осени обычно стоит сухая ясная погода. К концу осени циклоническая деятельность затухает. Начинает формироваться антициклон.

Частые заморозки бывают в конце августа. В долинах малых рек заморозки начинаются почти на месяц раньше, чем в долинах больших. В октябре-ноябре облачность наибольшая за год, но зато уменьшаются туманы, максимум которых приходится на август-сентябрь.

Геологическое строение

В геологическом строении участка геологического обследования принимают участие отложения среднего отдела кембрийской системы (Є2), представленные известняками и доломитами. С поверхности они перекрыты четвертичными отложениями различного генезиса.

Геокриологические условия

Участок геологического обследования расположен на территории, которая в мелкомасштабном плане (Геокриологическая карта СССР, масштаба 1:2500000, 1991) относится к зоне массивно-островного распространения многолетнемерзлых пород (ММП) ). Максимальная мощность зоны ММГ – 100 м.

Глубины сезонного промерзания-оттаивания в значительной мере определяются составом и свойствами грунтов. Наиболее типичные грунты слоя сезонного промерзания-оттаивания на всем протяжении трассы — пылеватые суглинки, от легких до тяжелых, реже встречаются пески с прослоями супесей и суглинков, часто содержащие в своем составе дресву и щебень; глубины сезонного оттаивания в таких грунтах изменяются от 1,0 до 2,5м. Минимальные глубины оттаивания — 0,5 — 1,5м. — свойственны заболоченным участкам долин рек при наличии в разрезе торфа и оторфованных суглинков.

Максимальные мощности СТС характерны для крутых склонов, сложенных песками, крупнообломочными или трещиноватыми скальными грунтами, в которых сказывается отепляющее влияние инфильтрации – от 2,5 до 4,5м.

Глубины сезонного промерзания изменяются от 2,0 — 3,0 м в супесчано-суглинистых грунтах, до 3,0 – 5,0 м в песчаных, крупнообломочных и скальных (СНиП 2.02.04-88, ВСН 84-89 прил.4).

День геоморфолога

25 Ноября 2016

Основателем геоморфологии был китайский учёный и государственный деятель Шэнь Ко (1031—1095), наблюдавший за раковинами морских животных, находящихся в геологическом слое горы, расположенной за сотни миль от Тихого океана. Заметив слой раковин двухстворчатых моллюсков, движущийся в горизонтальной протяжённости вдоль сечения обрыва, он высказал предположение, что этот обрыв ранее являлся морским побережьем, которое с прошествием веков сместилось на сотни миль. Он сделал вывод, что форма земли изменилась и сформировалась вследствие почвенной эрозии и отложении наносов, наблюдая за эрозией гор вблизи Вэньчжоу. К тому же он выдвинул теорию о постепенном изменении климата с течением веков, так как древние останки бамбука были найдены в сухой северной климатической зоне Янчжоу, ныне провинция Шэньси.

Основоположником современной геоморфологии в БСЭ назван немецкий геолог Фердинанд фон Рихтгофен. Геоморфология первоначально опиралась на географию. Первая геоморфологическая модель, выдвинутая Уильямом Морисом Дейвисом, между 1884 и 1899 годом, носила название ‘географический цикл’ или ‘цикл эрозии’. Этот цикл был привязан к ‘принципу актуализма’, который был сформулирован Джеймсом Хаттоном. Относительно впадин, этот цикл опирался на последовательность, с которой реки могут вырезать впадины все более и более глубокие, но затем береговая эрозия в конечном счёте снова выравнивает территорию, теперь уже понижая её. Цикл может снова начать поднимать территорию. Эта модель сегодня рассматривается со значительными упрощениями для более удобного использования на практике.

Вальтер Пенк развил альтернативную модель в 1920-х, основанную на соотношении подъёмов и эрозии, но этим также очень трудно было объяснить все многообразие форм рельефа.

Основы геоморфологии в Российской империи, а затем в СССР были заложены Ю.Я. Ходзько, П. П. Семёновым-Тян-Шанским, П. А. Кропоткиным, В. В. Докучаевым, И. Д. Черским, И. В. Мушкетовым, С. Н. Никитиным, Д. Н. Анучиным, А. П. Павловым, Я. С. Эдельштейном, В. А. Обручевым, И. С. Щукиным, С. С. Шульцом и др. Первая кафедра геоморфологии в России была создана в Географическом институте в Петрограде в 1918 г. Её возглавил видный тектонист — профессор Михаил Михайлович Тетяев, получивший образование в Льежском университете.

Современная геоморфология сосредотачивается на количественном анализе взаимосвязанных процессов, таких как роль солнечной энергии, скорость круговорота воды и скорость движения плит для вычисления возраста и ожидаемого будущего отдельных форм рельефа. Использование точной вычислительной техники даёт возможность непосредственно наблюдать такие процессы, как эрозию, в то время как ранее можно было основываться на предположениях и догадках. Компьютерное моделирование также очень ценно для тестирования определённой модели территории со свойствами, которые схожи с реальной территорией.

Мы поздравляем геоморфологов с их профессиональным праздником! Желаем им успехов и продвижения во всех делах, удачных и легких командировок, новых открытий, незабываемых впечатлений. Пусть по достоинству вознаграждаются ваш труд и старания!

← Предыдущая новость

24 Ноября 2016

Составлен «атлас подземелья» — каталог древних гор и океанов

Следующая новость →

28 Ноября 2016

Законопроекты о целевом использовании земли для строительства жилья

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *