Докембрий включает в себя

Докембрий

Докембрий — древнейший эон, подразделение геохронологической шкалы, объединяющее архей и протерозой.

Как стратиграфическое подразделение докембрий включает в себя древнейшие толщи земной коры, образование которых предшествовало кембрийскому периоду, и соответствующий им промежуток времени, составляющий около 6/7 геологической истории Земли, длительность формирования слоёв докембрия определяется от времени возникновения древнейших пород с радиометрическим возрастом свыше 3.500 млн. лет до начала кембрия (ок. 570 млн. лет назад). Соответствует криптозойскому эону.

Первые попытки расчленения докембрия относятся ко 2-й пол. XIX в., когда гл. образом на основании степени метаморфизма пород и других историко-геологических данных в составе докембрия были выделены архей (Дж. Дана, 1872), включающий глубокометаморфизованные породы, и протерозой (Э. Эммонс, 1888), объединивший менее изменённые осадочные и вулканогенные толщи. Граница между ними по современным представлениям совпадает с эпохой интенсивной складчатости и гранитизации (ок. 2.600 млн. лет назад). Позже под именем «альгонк», «синий», или «инфракембрий» были обособлены слабоизменённые толщи пород верхнего докембрия, заключающие богатые комплексы строматолитов.

В СССР была принята (1978) общая стратиграфическая шкала докембрия, в которую позже были внесены лишь незначительные уточнения. В этой шкале докембрий разделяется на архей и протерозой с границей между ними 2.600 млн. лет. В протерозое выделены два подразделения с рубежом между ними в 1.650 млн. лет: нижний включает архей и нижн. протерозой, верхний — верхн. протерозой. В составе последнего выделен рифей, разделяющийся на протосистемы или фитемы длительностью ок. 300 млн. лет. В самом верху докембрия был выделен венд (650-570 млн. лет), по ряду признаков сходный с системами палеозоя.

Отложения раннего докембрия, включающего архей и нижн. протерозой, слагают фундамент древних платформ и выходят на поверхность в области их щитов (Балтийского, Алданского, Канадского, Южно-Африканского), а также в ядрах складчатых сооружений геосинклинальных областей. В одних случаях (Юж. Африка) толщи пород нижнего Д. не испытали существенных изменений, в других (поднятие Улутау в Казахстане, Гренвиллский пояс Сев. Америки, Мозамбикский пояс Африки) — они претерпели ряд этапов складчатости и термального воздействия. Развитые в этих зонах толщи гнейсов с «омоложенными» значениями радиометрического возраста ошибочно относили к верхнему докембрию.

Отложения нижнего докембрия обычно представлены гнейсами, мигматитами, различными кристаллическими сланцами, амфиболитами и реже джеспилитами, кварцитами и мраморами. Они слагают мощные толщи, собранные в складки и прорванные интрузивными массивами основного (габбро и др.) и кислого (граниты, гранодиориты) составов. В конце раннего Д. формируются слабо изменённые толщи пород платформенного типа.

Верхний докембрий, или верхний протерозой, разделяется на рифей (от 1.650 до 650-680 млн. лет) и венд. Формации рифея и венда близки по типу к палеозойским и представлены мощными толщами кварцевых песчаников и кварцитов, глинистых сланцев и филлитов, различными вулканогенными образованиями, известняками и доломитами со строматолитами, толщами переслаивания, близкими к флишу, и обломочными отложениями, осаждавщимися у подножия формировавщихся в то время поднятий (молассы). Венд представлен осадочными и вулканогенно-осадочными породами, близкими по типу к палеозойским.

Докембрий — время повышенной тектонической активности (Докембрийские эпохи складчатости). В течение докембрийской истории Земли неоднократно проявлялись тектонические деформации, сопровождавшиеся термальными воздействиями и внедрением массивов горных пород преимущественно кислого состава (граниты и др.). Эти тектономагматические проявления, охватывавшие огромные площади, по некоторым представлениям, были планетарными.

Докембрийские толщи заключают многочисленные остатки синезелёных водорослей и следы их жизнедеятельности. Последние встречаются в карбонатных породах и носят название фитолитов. Среди них чаще всего встречаются строматолиты — столбообразные структуры (шириной в первые десятки см.) с отчётливой микрослоистостью, обращённой выпуклостью вверх, и микрофитолиты — мелкие желваки часто с концентрической слоистостью. Среди фитолитов распознаются различные группы и формы, которые в верхнем Д. используются для сопоставления разрезов. В глинистых породах встречаются остатки синезелёных водорослей, микроскопические цисты которых — акритархи — имеют стратиграфическое значение. Также известны следы жизнедеятельности организмов (норки, следы, ползания и др.). В отложениях на разных материках обнаружен богатый комплекс бесскелетных животных, представленный кишечнополостными (медузы), членистоногими (Vendia, Vendomia), плоскими червями (Dickinconia, Spriggina), иглокожими (Тribrасhidium) и формами неясной систематич. принадлежности, близкими к морским перьям (Rangea Charnia). На рубеже докембрия и фанерозоя эта ассоциация видов сменяется кембрийской фауной совершенно иного облика, состоящей из различных организмов с твёрдым скелетом.

Полезные ископаемые

С докембрийскими толщами связан разнообразный комплекс полезных ископаемых: свыше 70% запасов железных руд, 63% — марганцевых, 73% — хромовых, 61 % — медных, 72% — сульфидных никелевых, 93% — кобальтовых, 66% — урановых руд. В докембрийских пластах содержатся богатейшие залежи железных руд — железистые кварциты|железистых кварцитов и джеспилитов (Курская магнитная аномалия, Криворожский железорудный бассейн, Карсакпайское месторождение Казахстана и др.). С Д. связаны также м-ния алюминиевого сырья (кианит и силлиманит, бокситы, напр. Боксонское месторождение), марганца (многочисленные м-ния Индии). Конгломераты докембрийского Витватерсранда (допалеозойские россыпи) заключают крупнейшие м-ния урана и золота, а многочисленные интрузии основных и ультраосновных пород во многих областях мира — м-ния руд меди, никеля и кобальта. К карбонатным породам докембрия приурочены свинцово-цинковые м-ния, а с самыми верхами докембрия Восточной Сибири связаны м-ния нефти (Марковское м-ние в Иркутской обл.).

Cм. также:

  • Геохронологическая шкала

Животные докембрия и кембрийского периода

От созданий никаких скелетов, конечно, не сохранилось. Большей частью потому, что, собственно, и скелетов-то никаких животные тогда еще не имели. В кембрии, впрочем, костный панцирь и зачатки хорды они все-таки обрели, но за давностью времен не стоит рассчитывать на их сохранность. Всю информацию о животных вендского периода (докембрия, или, как его еще называют, эдиакария, длившегося примерно с 635 по 541 ±1 млн лет назад) и кембрия (начавшегося ориентировочно 541,0 ±1 млн лет назад и закончившегося 485,4 ±1,9 млн лет назад) ученые получают по отпечаткам.
Одним из главных источников этих отпечатков на сегодняшний день являются сланцы Бёрджес, расположенные в Канаде.

Сприггина
Это мягкотелое животное вендского периода имело цельную голову в форме полумесяца, похожего на щит трилобита, а также длинное тело, которое состояло из одинаковых сегментов и напоминает тело многощетинковых червей.
Отпечаток тела сприггины / ©Flickr Вендия
Еще одно животное эдиакария, довольно сильно напоминающее вышеупомянутую сприггину. Характерной особенностью многих вендских организмов является то, что членики их тел как бы сдвинуты друг относительно друга (дикинсония, чарния и др.) вопреки всем законам билатеральной симметрии (симметрия зеркального отражения, при которой объект имеет одну плоскость симметрии, относительно которой две его половины зеркально симметричны; к билатеральной симметрии относятся тела человека и большинства современных животных – NS). Этот факт ставит ученых в тупик, поскольку ранее считалось, что предками кольчатых червей являются именно вендские животные. Сегодня эта идея подвергается сомнению, что очень озадачивает исследователей, пытающихся проследить происхождение одних видов от других.
Листообразное животное, типичный представитель эдиакарской биоты — чарния / ©Flickr
Еще одна «жительница» вендского периода — дикинсония / ©Flickr
Эдиакарские животные — ирании (показаны синим), внизу — трехлучевые альбумаресы / ©Flickr
Галлюцигения
А вот это существо кембрийского периода представилось палеонтологам настолько удивительным, что им на секунду показалось, будто они видят галлюцинации. Отсюда и название. Ведь, если судить по сохранившимся отпечаткам этого животного, логично предположить, что вместо ног у него были шипы (причем по два-три в одном сегменте), а на спине располагался ряд каких-то мягких отростков! Такое едва ли возможно с точки зрения биологической науки. К счастью, позже были найдены более четкие отпечатки, на которых видно, что галлюцигения попросту была перевернута вверх тормашками, а второй ряд мягких ее ножек не отразился на отпечатке. Таким образом, галлюцигения выглядела так:
Галлюцигения / ©Flickr Айшеайя
Червеобразное животное кембрия. Возможно, питалась губками, поскольку ее останки часто находят вместе с останками губок.
Айшеайа / ©Flickr
Виваксия
Представитель нового поколения многоклеточных организмов, род ископаемых мягкотелых чешуйчатых животных. Предполагается, что виваксия жила с конца нижнего кембрия до среднего кембрия.
Виваксия / ©Flickr Пикайи
Примитивные хордовые животные длиной всего около 5 см, обладавшие, быть может, одним из первых в истории позвоночников. За миллионы лет эта простая структура превратится в позвоночник, без которого мы не смогли бы ни стоять, ни ходить. Кстати, появление скелета как такового, а также более совершенных глаз – одни из важнейших факторов, характеризующих кембрийский взрыв.
Пикайя / ©Flickr
Трилобиты
Еще один важнейший представитель кембрия и последующих геологических эпох. Это вымерший класс морских членистоногих. Быть может, один из самых многочисленных и самых живучих видов существ, когда-либо живших на Земле. Трилобиты были не очень симпатичны и напоминали современных мокриц, только гораздо тверже и больше – длина их тела могла достигать 90 см. На сегодняшний день известно более 10 тыс. ископаемых видов класса трилобитов.

Окаменевшие трилобиты / ©Flickr
Аномалокарис
С древнегреческого класс динокарид (Dinocarida), к которому и относится аномалокарис, переводится как «необычная» или «ужасная» креветка». Наверное, самое удивительное животное кембрийских морей. Аномалокариса, хищника рода ископаемых членистоногих, нашли не сразу – сначала обнаружили его части и долго разводили руками над столь удивительным животным. Так, отпечаток зубастого рта аномалокариса посчитали странной медузой с отверстием посередине. Конечности, которыми он хватал жертву, – креветками. Картина прояснилась, когда был найден полный отпечаток животного.
Аномалокарисы обитали в морях, плавали с помощью гибких боковых лопастей. Это одни из самых крупных организмов, известных в кембрийских отложениях. Длина их тела могла достигать 60 см, а иногда и 2 м.
Аномалокарис / ©Flickr
Опабиния, марелла и Hurdia victoria
Не менее удивительные создания, похожие на аномалокариса. Как и аномалокарис, все они представители вымершего класса динокарид. Но вместо хватательных отростков-«креветок» у опабинии – складной хоботок и пять глаз.

Катархей и архей. Особенности геологического развития Земли в эти эпохи.

⇐ ПредыдущаяСтр 8 из 22

Катархей приходится архею своеобразным предком. Он представляет собой отрезок геологического времени эона. Именно после него архей начал свое «правление». Верхняя часть внутренностей Земли расплавилась, естественно произошел перегрев. Впоследствии этого в геосфере возник магматический океан, и вся поверхность нашей планетой погрузилась в данный расплав. Кстати та же участь ожидала и литосферу. Это можно объяснить тем, что в эру катархеи отсутствовала геологическая летопись. Именно катархейский период является самым древним. Согласно результатам исследований он начал свое существование 4,57 млрд. лет назад и длился на протяжении 770 миллионов лет. В древней литературе историки и шаманы описывали процессы, которые по их данным происходили в то время. Так вот в первые годы жизни на Земле начала активно развиваться вулканическая деятельность, а по истечении некоторого времени и гидротермальная. По поводу этого ученые расходятся во мнениях. В принципе, последние исследования показали, что живые существа начала свое зарождение из гидротермальных источников. Однако другие данные опровергают эту мысль. В катархейскую эру на Земле были лишь те ландшафты, на которых царила холодная и суровая пустыня, небо при этом было черным, поскольку атмосфера была очень разреженной, и это влекло за собой последствия. Если температура низкая, то значит, что Солнце грело слабо – в 4 раза хуже, нежели сейчас. К тому же диск спутника нашей планеты был намного больше, чем сегодня. Расстояние от него до Земли составляло 17 тысяч километров.
Рельеф по виду не очень впечатлял, он был похож не на Землю, а на Луну, которую изрядно «побили» метеориты. Но, тем не менее, участки поверхности нашей планеты в то время не были острыми, поскольку интенсивные приливные землетрясения сглаживали рельеф. Поверхность Земли в катархейскую эру имела серый окрас и покрывалась огромным слоем реголита. В те времена не было вулканов, которые извергали лаву на поверхность недавно зародившейся планеты. Кроме этого отсутствовали водяные пары и газовые фонтаны. Возможно, вы удивитесь, но плотной атмосферы и гидросферы тогда еще не было в помине. Хотя нужно заметить, что водяные пары все-таки существовали, но длительность их жизни составляла всего доли секунды, поскольку пористый реголит их поглощал. Эти пары образовывались впоследствии планетезималей. Также источником их были и осколки Протолуны.
Когда Земля была молодой, длительность суток составляла всего 6 часов, что было равно периоду вращения Луны вокруг нашей планеты.


Архейская эра в геологии — самый древний, самый ранний период истории земной коры.
Нижнесилурийские и кембрийские отложения, заключающие богатую флору и фауну и составляющие основание всех осадочных образований земной коры, подстилаются мощной толщей глинистых и кристаллических сланцев, известняков, гнейсов и т. п. пород, частью вовсе лишенных органических остатков, частью крайне ими бедных.
В Америке, где впервые эта группа геологических памятников подверглась тщательному изучению, ее разбили на две подгруппы, на две системы, принятые и для всей Европы; но в последнее время в Америке стали склоняться к делению архейской группы на три системы.
Нижняя часть архейских, т. е. самых древних отложений, состоящая из гнейсов, гранулитов, гранитов, слюдяных сланцев, известняков и конгломератов, характеризуется сильным господством гнейсов, почти полным отсутствием следов органической жизни и носит название лаврентьевской системы (от р. св. Лаврентия), также системы первобытных, или первозданных, сланцев. Верхняя группа сложена преимущественно слюдяными и глинистыми сланцами, известняками, содержит больше остатков органической жизни, хотя также еще очень бедна ими, и называется системой первобытных, или первозданных, гнейсов, системой Гуронской (по Гуронскому оз.). Лаврентьевские гнейсы и сопровождающие их породы, по представлению многих геологов, являются первичной твердой корой земного шара, первой твердой оболочкой охлаждающегося огненно-жидкого земного шара. Предполагая, что вся вообще архейская группа лишена следов органической жизни, ее назвали азойской, т. е. лишенной органической жизни; после того как стали известны остатки животного и растительного царств в азойских отложениях, их правильнее (вместе с некоторыми геологами) стали называть агнотозойскими, т. е. такими, в которых органическая жизнь мало известна (частью даже вовсе неизвестна), но в которых она бесспорно существовала, так как следующие за ними кембрийские и силурийские отложения содержат уже сравнительно высоко организованную фауну, бесспорно имевшую многих предшественников. Неизмеримая древность архейских отложений, глубокая гидрохимическая и динамическая метаморфизация во многих случаях совершенно уничтожили или по крайней мере сильно замаскировали остатки органической жизни, сделали архейские породы «азойскими». Общая мощность архейских отложений превышает 3000 метров, древность не поддается определению числом столетий и тысячелетий, а определяется геологическими периодами.
В архейскую эру начали впервые обрисовываться материки и зародилась органическая жизнь. В лаврентьевских отложениях единственными ее следами является громадная корненожка (Eozoon Canadense), которая многими учеными рассматривается как родоначальник органической жизни, между тем как многие геологи отрицают вполне органическое происхождение Eozoon и видят в нем лишь минеральное конкрециозное образование.
Графит, очень распространенный в Лаврентьевских горных породах, свидетельствует в пользу существования растительных организмов. В гуронских породах, кроме углистых веществ (см. Шунгит), найдены остатки червей, иглокожих, водорослей.
Вулканическая деятельность, отличавшаяся в этот отдаленный период истории земной коры особой интенсивностью и массовым характером, доставила на земную поверхность громадные массы гранитов, диабазов, габбро и сиенитов. Золото, серебро, медные и железные руды, драгоценные камни (изумруды, турмалины, хризобериллы и т. п.) очень распространены в архейских породах.
В России в этом отношении выделяется Урал, играющий по своим минеральным богатствам первенствующую роль во всей Европе. Остатки архейской эры в виде различных архейских пород покрывают значительные площади Америки, Азии, Европы (Скандинавия, Богемия, Бавария, Саксония, Шотландия, Альпы и т. д.).
В России архейские отложения, в особенности лаврентьевские, пользуются значительным развитием в Олонецкой и Архангельской губ., также в Тиманском кряже на Урале, в Днепровской кристаллической полосе (Волынск., Подольск., Екатеринославская, Воронежская губ. и т. д.), а также в некоторых частях Сибири (Подкаменная Тунгуска, Саянский и Яблоновый хребты, Байкал)

24 прокариотные организмы. Появление в палеонтологической летописи Земли. Включение в биогеохимические циклы планеты

рокариотная биосфера. Главные изменения в геохимии планеты сводятся к формированию системы биогеохимических циклов, катализируемых бактериями. Циклы неполностью замкнуты и ведут к накоплению остаточных продуктов, которые обусловливают биогеохимическую сукцессию как центральное явление, определяющее судьбу биосферы. Конечным результатом служит создание оксической атмосферы с замыканием цикла фотосинтеза дыханием. Деструкция мортмассы ведет к накоплению СО2 в местах деструкции, что ускоряет углекислотное выветривание и, следовательно, связывание СО2 горными породами в маршруте «изверженные породы —-—»• глины + карбонаты». Удаление СО2 из атмосферы снижает парниковый эффект. Образование тонкодисперсных пород приводит к захоронению Сорг, который эквивалентен остаточному О2 атмосферы. Отсюда маршрут «выветривание —»• —»• седиментогенез» с захоронением керогена ответственен за образование кислородной атмосферы и оксических субаэральных условий, а маршрут «выветривание —•• карбонаты» — за создание нейтральной среды. Выветривание идет в субаэральных условиях на платформах, и геологическая летопись сводится к самоуничтожению следов процессов. Центральная роль процессов выветривания — седиментогенеза в преобразовании геосферы приводит к тому, что глубокий океан играет роль преимущественно физического резервуара растворенных веществ, поскольку цикл Сорг в нем замкнут. Отдельно следует рассматривать гидротермальные процессы на дне океана как источник газов и преобразования базальтов, включая их карбонатизацию. Седиментогенез локализован преимущественно в относительно мелководных водоемах. Поэтому необходимо признать гетерогенность географической оболочки Земли с областями интенсивных процессов преобразования на крупных геохимических барьерах и отказаться от попыток распространения данных по одному тафоценозу на всю планету.

Биотические процессы определяют цикл органического углерода. Ключевой реакцией служит образование биомассы при фотосинтезе, пропорциональное освещаемой дневной поверхности. Реакция ассимиляции с самого начала осуществлялась по рибулозобисфосфатному пути, как об этом можно судить по изотопному составу керогена древних пород с обогащением легким изотопом углерода близким 25 х 10~3. Какова была освещенная поверхность, пригодная для цианобак-терий? По-видимому, она не сильно отличалась от суммы площадей воды и суши, занятых фитопланктоном и растениями в настоящее время. Цианобактериальный мат относится к биоценозам организмов с коротким жизненным циклом, быстро набирающим максимальную плотность до полного самозатенения, т.е. около 500-1000 мг хлорофилла/м2. Отсюда можно заключить, что ассимиляция С-СО2 составляла величину п х х 102 млрд. т С/год, где п составляет 1-2. При использовании современных значений для стока С-СО2 в ~ 145 кг/1кг хлорофилла проективного покрытия растительного покрова необходимо сделать поправки на стадии стока углерода соответственно времени пребывания, где стадиям соответствуют:

Gross Primary Production (GPP) — всяассимилированнаяуглекислота;

Netto Primary Production (NPP) — углерод первичного продуцента за год (фотоассимиляция минус дыхание растения, в том числе ночью, предполагается GPP = 2NPP);

Netto Ecosystem Production (NEP) — экосистем-ная продукция соответствует NPP минус дыхание органотрофов в экосистеме в течение года;

Netto Biome Production (NBP) — накопление углерода в ландшафте в течение десятилетий с образованием устойчивого органического вещества гумуса с временем пребывания ~ 1000 лет.

Для наших целей необходимо ввести понятие нетто-геосферной продукции Netto Geospheric Production (NGP), соответствующее захороненному углероду керогена и каустобиолитов с временем пребывания более 108 лет (геологический рецикл).

В избранном нами масштабе времени все остальные величины, кроме NGP, представляют малые величины динамических резервуаров с наиболее крупной величиной — устойчивым углеродом гумуса, куда входит и растворенное органическое вещество океана. Считается, что для водных экосистем logNGP = klogGPP и количество углерода, переходящего в устойчивую форму в осадках, пропорционально первичной продукции (Tyson, 1995), поскольку для водорослей с коротким жизненным циклом GPP ~ NPP. Из цикла выводится только устойчивый углерод, и таким образом скорость седиментации тонкодисперсных осадков глин контролирует создание кислородной атмосферы (см. рис. 1).

Ключевым этапом для начала образования ке-рогена в осадках фанерозоя служит переход из оксической в аноксическую зону с резким уменьшением скорости деструкции. Эта концепция явно непригодна для ранних этапов эволюции геосферно-биосферной системы, поскольку в атмосфере не было О2. Кислородная обстановка тогда создавалась в экосистемах на короткое дневное время, и в плотных скоплениях водорослей она могла достигать 100% вблизи пузырьков газа. Соответственно бактерии в непосредственной близости от цианобактерий должны были обладать окситолерантностью, хотя бы к стрессовым воздействиям кислорода, а возможно, и быть «half time» аэробами. Круглосуточный аэробиоз вряд ли имел место, а при стоке кислорода в океан создавались условия для микроаэрофилов, каковы многие водные микроорганизмы.

Ассимиляция СО2 происходит в молярном отношении СО2:Сорг:О2 = 1:1:1 по реакции СО2 + + Н2О = + О2. Реакция ассимиляции уравновешивается дыханием, осуществляющим обратную реакцию.

С циклом углерода связаны циклы азота и фосфора в отношении, определяемом их включением в биомассу. Для микробов отношение C:N:P = = 106:16:1.

В современных условиях лимитирующим биогеном чаще всего служит связанный азот. В про-кариотной атмосфере это было не так, поскольку многие прокариоты способны к ассимиляции N2, особенно в аноксических условиях. Ассимиляция N2 ведет к существенным дополнительным энергетическим затратам, но она не была безусловным ограничением. Таким образом, накопление связанного азота наряду с созданием кислородной атмосферы было необходимым предварительным условием для возможности появления эукариот-протист с фотосинтезом и дыханием как единственными путями метаболизма.

25.прокариотные биогеоценотические сообщества. Их роль в стабилизации состояния планеты.

Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

Большую часть геологической истории Земли (7/8 всей продолжительности существования планеты) занимает докембрий. На самых первых этапах эволюции Земли после завершения образования планеты, разогревания ее недр, формирования ядра, приведших к активным проявлениям магматизма и, в частности, вулканизма, начались дегазация мантии и образование гидросферы и атмосферы. В архее появились микроскопические одноклеточные водоросли, которые могли осуществлять фотосинтез органических веществ из диоксида углерода и воды с выделением свободного кислорода. (См. первые организмы) Этот кислород шел на окисление аммиака до молекулярного азота. Около 1,8 млрд лет назад, скорость образования кислорода при фотосинтезе стала достаточно высокой и кислород перестал быть малой примесью в атмосфере. С начала этой стадии парциальное давление кислорода все время увеличивалось, пока не достигло современного значения.

Временные масштабы докембрия позволяют выявить в истории Земли не только крупные периодические, но и необратимые изменения климата. О тех и других можно судить по наиболее ярким климатическим событиям − оледенениям, которые образуют как бы каркас климатической истории нашей планеты. Главными литологическими индикаторами, которые могут быть использованы для реконструкций в докембрии, являются тиллиты, эвапориты (гипсы, соли) и карбонатные платформы. Менее однозначны карбонатные и особенно бескарбонатные красноцветы.

Распространение оледенений в геологической истории было весьма неравномерным. Частота и масштабы оледенений возрастали со временем. Такое распределение не могло быть результатом только недостаточной изученности более древних отложений. За последние 30−40 лет были существенно уточнены возраст и ареалы распространения древних ледниковых отложений, но практически не было открыто ни одного нового ледникового горизонта. Поэтому есть основания думать, что с достаточным для нас приближением современные данные отражают реальное распространение оледенений в геологической истории.

Достоверных данных об оледенениях в раннем и среднем архее нет. Первые следы оледенений, еще очень редкие и пространственно ограниченные, известны в верхнем архее на небольшом кратоне Каапваал в ЮАР. Это тиллиты надгруппы Витватерсранд и одновозрастной группы Мозоан. Оледенение Мозоан было покровным, поскольку частично представлено бассейновыми отложениями с дропстоунами, а оледенение Витватерсранд имело, видимо, предгорный или горный характер. Возраст надгруппы Витватерсранд и группы Мозоан сейчас оценивается около 2,9 млрд лет.

Значительно шире распространены ледниковые отложения в нижней части раннего протерозоя. Они известны на четырех континентах. Преобладание среди нижнепротерозойских ледниковых отложений мариногляциальных фаций свидетельствует о покровном характере этих оледенений. В Северной Америке нижнепротерозойские ледниковые отложения известны в четырех регионах на противоположных концах континента. В разрезе раннепротерозойской Гуронской надгруппы к северу от Великих озер установлено три ледниковых горизонта. Их возраст оценивается приблизительно в 2,33−2,22 млрд лет, на Балтийском щите нижнепротерозойские ледниковые отложения имеют возраст между 2,4 и 2,3 млрд лет, в Южной Африке давно известны ледниковые отложения возраст которых 2,4−2,2 млрд лет. В Западной Австралии – ледниковые отложения возраст которых тоже заключен между 2,4 и 2,2 млрд лет. Однотипные изотопно-углеродные аномалии, связанные с карбонатными отложениями, перекрывающими перечисленные выше раннепротерозойские ледниковые отложения, подтверждают, что нижнепротерозойские оледенения были приблизительно одновозрастными. Вероятно, в нижнем протерозое в мантии Земли существовала одна конвективная ячейка, что и способ­ствовало развитию обширных оледенений Континентальное покровное раннего протерозоя в литературе часто называется Гуронским оледенением.

Породы архея и раннего протерозоя дошли до нас в сильно измененном состоянии. Высокие давления и температуры преобразовали первоначальный облик породы, уничтожив всякие следы древней жизни. Поэтому изучение древнейшего животного и растительного мира связано с огромными трудностями. Однако за последние 15–20 лет с помощью современных приборов удалось кое-что прояснить и в облике самых первых организмов на Земле. Изучая с помощью электронного микроскопа, химических и изотопных анализов сланцы свиты Онвервахт, возраст которых превышает 3,2 млрд лет, ученые Аризонского университета обнаружили в них тысячи мельчайших образований сферической, нитеобразной и скорлуповидной формы. Размеры частиц не превышали 0,01 мм. Найденные образования представляют собой окаменевшие остатки одноклеточных морских водорослей. В еще более древних породах Западной Австралии (разрез Пилбара, возраст 3,5 млрд лет) обнаружены строматолиты – особые формы структур, связанные с деятельностью сине-зеленых водорослей (Гаврилов В.П., 1986).

Из растений в архее и раннем протерозое активно развиваются сине-зеленые водоросли. Остатки этих водорослей в виде шаровидных, грибовидных и столбообразных известковых тел, характеризующихся тонкой концентрической слоистостью (строматолиты), часто находят в породах протерозоя. Считают, что первыми представителями органической жизни на Земле были именно сине-зеленые водоросли. Благодаря жизнедеятельности сине-зеленых водорослей на нашей планете начала формироваться кислородная среда.

Рис. 3.7. Одна из древнейших находок нитчатых красных бангиевых водорослей из ранненеопротерозойской формации Канады. Возраст − 1,2 млрд. лет. Масштаб 50 мкм (Сергеев В.Н., Нолл Э.X., Заварзин Г.А., 1996)

Два с лишним миллиарда лет, от раннего архея до позднего протерозоя жизнь темпы биологической эволюции были очень медленными. Ускорение биологической эволюции дали многоклеточные эукариоты, появившиеся, возможно, в позднем архее. В позднем протерозое была пройдена «точка Пастера» − такая концентрация кислорода в окружающей среде, выше которой кислородное дыхание становится энергетически выгодным. Появившиеся более миллиарда лет назад многоклеточные красные и зелёные водоросли способствовали переходу атмосферы из восстановительной в окислительную.

В позднем протерозое (речь идёт о двух последних его периодах – рифее и венде) возникли многоклеточные животные практически всех известных нам типов.

Криптозой

Криптозой

Доке́мбрий, криптозо́й (от греч. κρυπτός kryptós — скрытный и греч. ζωή, zoe — жизнь) — общее название той части геологической истории Земли, которая предшествовала началу кембрийского периода, когда возникла масса организмов, оставляющих ископаемые остатки в осадочных породах.

На докембрий приходится большая часть геологической истории Земли — около 3,8 млрд.

лет. При этом его хронология разработана гораздо хуже, чем последовавшего за ним фанерозоя. Причина этого в том, что органические остатки в докембрийских отложениях встречаются крайне редко, что является одной из отличительных особенностей этих древнейших геологических образований. Поэтому палеонтологический метод изучения не применим для докембрийских толщ.

Интенсивное изучение геологической истории докембрия началось в конце 20-го века, в связи с появлением мощных методов изотопной геохронологии.

Стратиграфическое деление докембрия было предметом многочисленных споров. Обычно он делится на венд, протерозой и архей. В 90-х годах Стратиграфической комиссией была принята единая временная шкала докембрия, однако она вызывает много споров.

Породы докембрия выходят на земную поверхность на кристаллических щитах и слагают фундамент платформ. Очень часто они претерпели несколько этапов сильных деформаций, метаморфизма, внедрения расплавов и частичного плавления. Расшифровка таких событий представляет собой архисложную задачу и геология докембрия считается специалистами одной из самых сложных областей геологии.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *