Клеточный центр выполняет функции основой цитоскелета являются

Микротрубочки

С помощью электронного микроскопа в цитоплазме эукариот можно увидеть фибриллярную сеть, функции которой связаны с движением внутриклеточного содержимого, перемещением самой клетки, а также в совокупности с другими структурами поддерживается форма клетки. Одними из таких фибрилл являются микротрубочки (обычно длиной от нескольких микрометров до нескольких миллиметров), представляющие собой длинные тонкие цилиндры (диаметром около 25 нм) с полостью внутри. Их относят к органоидам клетки.

Стенки микротрубочек состоят из спирально упакованных субъединиц белка тубулина, состоящего из двух частей, то есть представляющего собой димер.

Соседние трубочки могут быть связаны между собой выступами своих стенок.

Данный клеточный органоид относится к динамическим структурам, так может нарастать и распадаться (полимеризуется и деполимеризуется). Рост происходит за счет добавления новых тубулиновых субъединиц с одного конца (плюс), а разрушение – с другого (минус-конец). То есть микротрубочки полярны.

В животных клетках (а также у многих простейших) центрами организации микротрубочек являются центриоли. Они сами состоят из девяти триплетов укороченных микротрубочек и располагаются около ядра. От центриолей трубочки радиально расходятся, то есть растут к периферии клетки. У растений центрами организации выступают другие структуры.

Флуоресцентная подсветка клеточных фибрилл (зеленым цветом светятся микротрубочки)

Из микротрубочек состоит веретено деления, которое осуществляет расхождение хроматид или хромосом при митозе или мейозе. Из них состоят базальные тельца, лежащие в основании ресничек и жгутиков. Движение веретена, ресничек и жгутиков происходит за счет скольжения трубочек.

Похожей функцией является перемещение ряда клеточных органоидов и частиц (например, секреторных пузырьков, образующихся в аппарате Гольджи, лизосом, даже митохондрий). При этом микротрубочки играют роль своеобразных рельсов. Специальные моторные белки одним своим концом крепятся к трубочкам, а другим — к органеллам. За счет их движения вдоль трубочек происходит транспорт органелл. При этом одни моторные белки двигаются только от центра к периферии (кинезины), другие (динеины) — от периферии к центру.

Транспортный белок динеинТранспортный белок кинезин

Микротрубочки за счет своей жесткости участвуют в формировании опорной системы клетки — цитоскелета. Определяют форму клетки.

Сборка и разборка микротрубочек, а также транспорт по ним идет с затратой энергии.

Цитоскелет эукариот

Клетки эукариот содержат три типа так называемых филаментов. Это супрамолекулярные, протяжённые структуры, состоящие из белков одного типа, сходные с полимерами. Разница заключается в том, что в полимерах связь между мономерами ковалентная, а в филаментах связь составных единиц обеспечивается за счёт слабого нековалентного взаимодействия.

Актиновые филаменты (микрофиламенты)

Порядка 7 нм в диаметре, микрофиламенты представляют собой две цепочки из мономеров актина, закрученные спиралью. В основном они сконцентрированы у внешней мембраны клетки, так как отвечают за форму клетки и способны образовывать выступы на поверхности клетки (псевдоподии и микроворсинки). Также они участвуют в межклеточном взаимодействии (образовании адгезивных контактов), передаче сигналов и, вместе с миозином — в мышечном сокращении. С помощью цитоплазматических миозинов по микрофиламентам может осуществляться везикулярный транспорт.

Промежуточные филаменты

Диаметр промежуточных филаментов составляет от 8 до 11 нанометров. Они состоят из разного рода субъединиц и являются наименее динамичной частью цитоскелета.

Схема, показывающая цитоплазму, вместе с её компонентами (или органеллами), в типичной животной клетке. Органеллы:
(1) Ядрышко
(2) Ядро
(3) рибосома (маленькие точки)
(4) Везикула
(5) шероховатый эндоплазматический ретикулум (ER)
(6) Аппарат Гольджи
(7) Цитоскелет
(8) Гладкий эндоплазматический ретикулум
(9) Митохондрия
(10) Вакуоль
(11) Цитоплазма
(12) Лизосома
(13) Центриоль и Центросома

Микротрубочки

Микротрубочки представляют собой полые цилиндры порядка 25 нм диаметром, стенки которых составлены из 13 протофиламентов, каждый из которых представляет линейный полимер из димера белка тубулина. Димер состоит из двух субъединиц — альфа- и бета- формы тубулина. Микротрубочки — крайне динамичные структуры, потребляющие ГТФ в процессе полимеризации. Они играют ключевую роль во внутриклеточном транспорте (служат «рельсами», по которым перемещаются молекулярные моторы — кинезин и динеин), образуют основу аксонемы ундулиподий и веретено деления при митозе и мейозе.

Цитоскелет прокариот

Долгое время считалось, что цитоскелетом обладают только эукариоты. Однако с выходом в 2001 году статьи Jones и соавт. (PMID 11290328), описывающей роль бактериальных гомологов актина в клетках Bacillus subtilis, начался период активного изучения элементов бактериального цитоскелета. К настоящему времени найдены бактериальные гомологи всех трех типов элементов цитоскелета эукариот — тубулина, актина и промежуточных филаментов. Также было установлено, что как минимум одна группа белков бактериального цитоскелета, MinD/ParA, не имеет эукариотических аналогов.

Бактериальные гомологи актина

К наиболее изученным актиноподобным компонентам цитоскелета относятся MreB, ParM и MamK.

MreB и его гомологи

Основная статья: MreB

Белки MreB и его гомологи являются актиноподобными компонентами цитоскелета бактерий, играющими важную роль в поддержании формы клетки, сегрегации хромосом и организации мембранных структур. Некоторые виды бактерий, такие как Escherichia coli, имеют только один белок MreB, тогда как другие могут иметь 2 и более MreB-подобных белков. Примером последних служит бактерия Bacillus subtilis, у которой были обнаружены белки MreB, Mbl (MreB-like) и MreBH (MreB homolog).

В геномах E. coli и B. subtilis ген, отвечающий за синтез MreB, находится в одном опероне с генами белков MreC и MreD. Мутации, подавляющие экспрессию данного оперона, приводят к образованию клеток сферической формы с пониженной жизнеспособностью.

Субъединицы белка MreB образуют филаменты, обвивающие палочковидную бактериальную клетку. Они располагаются на внутренней поверхности цитоплазматической мембраны. Филаменты, образуемые MreB, динамичны, постоянно претерпевают полимеризацию и деполимеризацию. Непосредственно перед делением клетки MreB концентрируется в области, в которой будет формироваться перетяжка. Считается, что функцией MreB также является координация синтеза муреина — полимера клеточной стенки.

Гены, отвечающие за синтез гомологов MreB, были обнаружены только у палочковидных бактерий и не были найдены у кокков.

ParM

Основная статья: ParM

Белок ParM присутствует в клетках, содержащих малокопийные плазмиды. Его функция заключается в разведении плазмид по полюсам клетки. При этом субъединицы белка формируют филаменты, вытянутые вдоль большой оси палочковидной клетки.

Филамент по своей структуре представляет собой двойную спираль. Рост филаментов, образуемых ParM, возможен с обоих концов, в отличие от актиновых филаментов, растущих только на ±полюсе.

MamK

MamK — это актиноподобный белок Magnetospirillum magneticum, отвечающий за правильное расположение магнитосом. Магнитосомы представляют собой впячивания цитоплазматической мембраны, окружающие частички железа. Филамент MamK выполняет роль направляющей, вдоль которой, одна за другой, располагаются магнитосомы. В отсутствие белка MamK магнитосомы располагаются беспорядочно по поверхности клетки.

Гомологи тубулина

В настоящее время у прокариот найдены 2 гомолога тубулина: FtsZ и BtubA/B. Как и эукариотический тубулин, эти белки обладают ГТФазной активностью.

FtsZ

Белок FtsZ чрезвычайно важен для клеточного деления бактерий, он найден практически у всех эубактерий и архей. Также гомологи этого белка были обнаружены в пластидах эукариот, что является ещё одним подтверждением их симбиотического происхождения.

FtsZ формирует так называемое Z-кольцо, выполняющее роль каркаса для дополнительных белков клеточного деления. Вместе они представляют собой структуру, ответственную за образование перетяжки (септы).

BtubA/B

В отличие от широко распространенного FtsZ, эти белки обнаружены только у бактерий рода Prosthecobacter. Они более близки к тубулину по своему строению, чем FtsZ.

Кресцентин, гомолог белков промежуточных филаментов

Основная статья: Кресцентин

Белок был найден в клетках Caulobacter crescentus. Его функцией является придание клеткам C. crescentus формы вибриона. В случае отсутствия экспрессии гена кресцентина клетки C. crescentus приобретают форму палочки. Интересно, что клетки двойных мутантов, кресцентин− и MreB−, имеют сферическую форму.

MinD и ParA

Эти белки не имеют гомологов среди эукариот.

MinD отвечает за положение сайта деления у бактерий и пластид. ParA участвует в разделении ДНК по дочерним клеткам.

Примечания

Белки цитоскелета

Микрофиламенты

Актины (A1, A2, B, C1, G1, G2)

Миозины (1A, 1B, 1C, MYH1, MYH2, MYH3, MYH4, MYH6, MYH7, MYH7B, MYH8, MYH9, MYH10, MYH11, MYH13, MYH14, MYH15, MYH16)

Тропомодулин (1, 2, 3, 4) · Тропонин (T 1 2 3, C 1 2, I 1 2 3) · Тропомиозин (1, 2, 3, 4)

Актинин (1, 2, 3, 4) · Arp2/3 complex · actin depolymerizing factors (Cofilin (1, 2) · Дестрин) · Gelsolin · Profilin (1, 2) · Титин

Промежуточные филаменты

первого и второго типа (цитокератин, type I, type II) · третьего типа (десмин, GFAP, Peripherin, виментин) · четвертого типа (Internexin, Nestin, нейрофиламент, Synemin, Syncoilin) · пятого типа (ламин A, B)

Микротрубочки

Динеины · Кинезины · Белки, ассоциированные с микротрубочками (Tau protein, Dynamin) · Tubulins · Stathmin · Tektin

Катенины

другие

APC · Dystrophin (Dystroglycan) · plakin (Desmoplakin, Plectin) · Spectrin (SPTA1, SPTAN1, SPTB, SPTBN1, SPTBN2, SPTBN4, SPTBN5) · Talin (TLN1) · Utrophin · Vinculin

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 15 мая 2011 года.

Цитоскелет представляет собой сеть волокон, обеспечивающих структурную поддержку (каркас) эукариотических или прокариотических клеток и археев. В эукариотических клетках эти волокна состоят из сложной сетки белковых нитей и моторных белков, которые помогают в перемещении и стабилизации клеток.

Структура цитоскелета

Цитоскелет состоит по меньшей мере из трех различных типов волокон: микротрубочек, микрофиламентов и промежуточных волокон. Эти волокна отличаются своим размером, причем микротрубочки являются самыми толстыми, а микроволокна являются самыми тонкими.

Протеиновые волокна

  • Микротрубочки представляют собой полые стержни, функционирующие прежде всего для поддержки или формирования клетки и выступают в роли «маршрутов», вдоль которых могут перемещаться органеллы. Микротрубочки обычно встречаются во всех эукариотических клетках. Они различаются по длине и составляют около 25 нм (нанометров) в диаметре.
  • Микрофиламенты или актиновые нити представляют собой тонкие твердые стержни, которые активны при мышечном сокращении. Они особенно распространены в мышечных клетках. Подобно микротрубочкам, они обычно встречаются во всех эукариотических клетках. Микрофиламенты состоят в основном из сократительного белкового актина и имеют диаметр до 8 нм.
  • Промежуточные нити могут быть многочисленными во многих клетках и обеспечивать поддержку микрофиламентов и микротрубочек, удерживая их на месте. Эти нити образуют кератины, обнаруженные в эпителиальных клетках и нейрофиламентах в нейронах. Они имеют диаметр около 10 нм.

Моторные белки

Ряд моторных белков содержится в цитоскелете. Как следует из их названия, эти белки активно перемещают волокна цитоскелета. В результате молекулы и органеллы транспортируются вокруг клетки. Моторные белки питаются от АТФ, который образуется посредством клеточное дыхания. Существует три типа моторных белков, участвующих в движении клеток:

  • Кинезины двигаются вдоль микротрубочек, несущих сотовые компоненты по пути. Они обычно используются для вытягивания органелл в клеточную мембрану.
  • Динеины похожи на кинезины и используются для вытягивания клеточных компонентов внутри ядра. Они также обеспечивают скольжение микротрубочек, которое наблюдается при движении ресничек и жгутиков.
  • Миозины взаимодействуют с актином для выполнения мышечных сокращений. Они также участвуют в цитокинезе, эндоцитозе и экзоцитозе.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *