Макрофаги

8.Макрофаги

№ 1 иммунитет. Виды иммунитета.

Иммунитет – это способ защиты организма от генетически чужеродных веществ – антигенов, направленный на поддержание и сохранение гомеостаза, структурной и функциональной целостности организма.

1.Врожденный, иммунитет — это выработанная в про­цессе филогенеза генетически закреплен­ная, передающаяся по наследству невоспри­имчивость данного вида и его индивидов к какому-либо антигену ,обусловленная биологическими осо­бенностями самого организма, свойствами данного антигена, а также особенностями их взаимодействия.(пр: чума крупного рога­того скота)

врожденный иммунитет может быть абсолют­ным и относительным. Например, нечувс­твительные к столбнячному токсину лягушки могут реагировать на его введение, если по­высить температуру их тела.

Объяснить видовой иммунитет можно с разных позиций, прежде всего отсутствием у того или иного вида рецепторного аппарата, обеспечивающего пер­вый этап взаимодействия данного антигена с клетками или молекулами-мишенями, опре­деляющими запуск патологического процесса или активацию иммунной системы. Не исклю­чены также возможность быстрой деструкции антигена, например, ферментами организма или же отсутствие условий для приживления и размножения микроба (бактерий, вирусов) в организме. В конечном итоге это обусловле­но генетическими особенностями вида, в час­тности отсутствием генов иммунного ответа к данному антигену.

2.Приобретенный иммунитет — это невос­приимчивость к антигену чувствительного к нему организма человека, животных и пр., приобретаемая в процессе онтогенеза в результате естественной встречи с этим антигеном организма, например, при вак­цинации.

Примером естественного приобретенного иммунитета у человека может служить не­восприимчивость к инфекции, возникающая после перенесенного заболевания, так назы­ваемый постинфекционный

Приобретенный иммунитет может быть ак­тивным и пассивным. Активный иммунитет обусловлен активной реакцией, активным вовлечением в процесс иммунной системы при встрече с данным антигеном (например, поствакцинальный, постинфекционный им­мунитет), а пассивный иммунитет формируется за счет введения в организм уже готовых иммунореагентов, способных обеспечить защиту от антигена. К таким иммунореагентам отно­сятся антитела, т. е. специфические иммуног­лобулины и иммунные сыворотки, а также иммунные лимфоциты. Иммуноглобулины широко используют для пассивной иммуни­зации.

различают клеточный, гуморальный, клеточно-гуморальный и гуморально-клеточный иммунитет.

Примером клеточного иммунитета может служить противоопухолевый, а также транс­плантационный иммунитет, когда ведущую роль в иммунитете играют цитотоксические Т-лимфоциты-киллеры; иммунитет при инфекциях (столбняк, боту­лизм, дифтерия) обусловлен в основном ан­тителами ; при туберкулезе ведущую роль играют иммунокомпетентные клетки (лимфоциты, фагоциты) с участием специфических антител; при некоторых ви­русных инфекциях (натуральная оспа, корь и др.) роль в защите играют специфические антитела, а также клетки иммунной системы.

В инфекционной и неинфекционной пато­логии и иммунологии для уточнения харак­тера иммунитета в зависимости от природы и свойств антигена пользуются также такой терминологией: антитоксический, противо­вирусный, противогрибковый, противобактериальный, противопротозойный, трансплан­тационный, противоопухолевый и другие ви­ды иммунитета.

Наконец, иммунное состояние, т. е. актив­ный иммунитет, может поддерживаться, со­храняться либо в отсутствие, либо только в присутствии антигена в организме. В первом случае антиген играет роль пускового фак­тора, а иммунитет называют стерильным. Во втором случае иммунитет трактуют как не­стерильный. Примером стерильного иммуни­тета является поствакцинальный иммунитет при введении убитых вакцин, а нестерильно­го — иммунитет при туберкулезе, который со­храняется только в присутствии в организме микобактерий туберкулеза.

Иммунитет (резистентность к антигену) может быть системным, т. е. генерализован­ным, и местным, при котором наблюдается более выраженная резистентность отдельных органов и тканей, например слизистых верх­них дыхательных путей (поэтому иногда его называют мукозальным).

№2 Антигены..

• Антигены представляют собой чужеродные вещества или структуры, которые способны вызывать иммунный ответ.

Характеристики антигена:

Иммуногенность — это свойство антигена вызывать иммунный ответ .

Специфичность антигена — это способность антигена избирательно реагировать с антителами или сенсибилизированными лимфоцитами, которые появились в результате иммунизации . За специфичность антигена ответственны определенные участки его молекулы, называемые детерминантами (или эпитопами). Специфичность антигена определяется набором детерминант.

КЛАССИФИКАЦИЯ АНТИГЕНОВ:

Название

Антигены

Корпускулярные антигены

Различные клетки и крупные частицы: бактерии, грибки, простейшие, эритроциты

Растворимые антигены

Белки различной степени сложности, полисахариды

Трансплантационные антигены

Антигены клеточной поверхности, контролируемые ГКГС

Ксеноантигены (гетерологичные)

Антигены тканей и клеток, отличающиеся от реципиента на видовом уровне (донор и реципиент разных видов)

Аллоантигены (гомологичные)

Антигены тканей и клеток, отличающиеся от реципиента на внутривидовом уровне (донор и реципиент принадлежат к генетически неидентичным индивидам одного и того же вида)

Сингенные

Донор и реципиент принадлежат к одной и той же инбредной линии животных

Изогенные (изологичные)

Генетическая идентичность индивидов (н-р, однояйцевые близнецы)

Аутоантигены

Антигены собственных клеток организма

Аллергены

Антигены пищи, пыли, пыльцы растений, ядов насекомых, вызывающие повышенную реактивность

Толерогены

Антигены клеток, белков, вызывающие ареактивность

Синтетические антигены

Искусственно синтезированные полимеры аминокислот, углеводов

Гаптены

Простые химические соединения в основном ароматического ряда

Тимус — зависимые

Полноценное развитие специфического иммунного ответа этих антигенов начинается только после подключения Т-клеток

Тимус — независимые

Полисахариды, с повторяющимися структурно идентичными эпитопами, стимулируют В- клетки; способны инициировать иммунный ответ в отсутствии Т- хелперов

Основными видами бактериальных антигенов являются:

— соматические или О- антигены (у грамотрицательных бактерий специфичность определяется дезоксисахарами полисахаридов ЛПС);

— жгутиковые или Н- антигены (белковые);

— поверхностные или капсульные К- антигены.

№3 Антитела( иммуноглобулины.)

Антителами называются сывороточные белки, образующиеся в ответ на действие антигена. Они относятся к сывороточным глобулинам, поэтому называются иммуноглобулинами (Ig). Через них реализуется гуморальный тип иммунного ответа. Антитела обладают 2 свойствами: • специфичностью, т. е. способностью вступать во взаимодействие с антигеном, аналогичным тому, который индуцировал (вызвал) их образование; • гетерогенностью по физико-химическому строению, специфичности, генетической детерминированности образования (по происхождению). Все иммуноглобулины являются иммунными, т. е. образуются в результате иммунизации, контакта с антигенами. Тем не менее по происхождению они делятся: • на нормальные (анамнестические) антитела, которые обнаруживаются в любом организме как результат бытовой иммунизации; • инфекционные антитела, которые накапливаются в организме в период инфекционной болезни; • постинфекционные антитела, которые обнаруживаются в организме после перенесенного инфекционного заболевания; • поствакцинальные антитела, которые возникают после искусственной иммунизации.

№4 неспецифические факторы защиты их характеристики

1) гуморальные факторы — система комплемента. Комплемент — это комплекс 26 белков в сыворотке крови. Обозначается каждый белок, как фракция, латинскими буквами: С4, С2, СЗ и т. д. В условиях нормы система комплемента находится в неактивном состоянии. При попадании антигенов он активируется, стимулирующим фактором является комплекс антиген — антитело. С активации комплемента начинается любое инфекционное воспаление. Комплекс белков комплемента встраивается в клеточную мембрану микроба, что приводит к лизису клетки. Также комле-мент участвует в анафилаксии и фагоцитозе, так как обладает хемотаксической активностью. Таким образом, комплемент является компонентом многих им-мунолитических реакций, направленных на освобождение организма от микробов и других чужеродных агентов;

2) клеточные факторы защиты.

Фагоциты. Фагоцитоз (от греч. phagos — пожираю, cytos — клетка) впервые открыл И. И. Мечников, за это открытие в 1908 г. он получил Нобелевскую премию. Механизм фагоцитоза состоит в поглощении, переваривании, инактивации инородных для организма веществ специальными клетками-фагоцитами. К фагоцитам Мечников отнес макрофаги и микрофаги. В настоящее время все фагоциты объединены в единую фагоцитирующую систему. В нее включены: промоноциты — вырабатывает костный мозг; макрофаги — разбросаны по всему организму: в печени они называются «купферовские клетки», в легких — «альвеолярные макрофаги», в костной ткани — «остеобласты» и т. д. Функции клеток-фагоцитов самые разнообразные: они удаляют из организма отмирающие клетки, поглощают и инактивируют микробы, вирусы, грибы; синтезируют биологически активные вещества (лизоцим, комплемент, интерферон); участвуют в регуляции иммунной системы.

Процесс фагоцитоза, т. е. поглощение инородного вещества клетками-фагоцитами, протекает в 4 стадии:

1) активация фагоцита и его приближение к объекту (хемотаксис);

2) стадия адгезии — прилипание фагоцита к объекту;

3) поглощение объекта с образованием фагосомы;

4) образование фаголизосомы и переваривание объекта с помощью ферментов.

№5 Органы, ткани и клетки иммунной системы

Различают центральные и периферические органы иммунной системы, в которых развиваются, созревают и дифференцируются клетки иммунной системы.

Центральные органы иммунной системы — костный мозг и тимус. В них из стволовых кроветворных клеток лимфоциты дифференцируются в зрелые неиммунные лимфоциты, так называемые наивные лимфоциты (от англ. naive), или девственные (от англ. virgine).

Кроветворный костный мозг — место рождения всех клеток иммунной системы и созревания В-лимфоцитов (В-лимфопоэз).

Тимус (вилочковая железа) отвечает за развитие Т-лимфоцитов: Т-лимфопоэз (реаранжировка, т.е. перестройка генов TcR, экспрессия рецепторов, и т. д.). В тимусе отбираются Т-лимфоциты (CD4 и CD8) и уничтожаются высокоавидные к собственным антигенам клетки. Гормоны тимуса завершают функциональное созревание Т-лимфоцитов, повышают секрецию ими цитокинов. Родоначальницей всех клеток иммунной системы является кроветворная стволовая клетка. Из лимфоидных стволовых клеток образуются предшественники Т- и В — клеток, которые служат источником Т- и В- популяций лимфоцитов. Т — лимфоциты развиваются в тимусе под влиянием его гуморальных медиаторов (тимозин, тимопоэктин, тиморин и др.). В дальнейшем тимусзависимые лимфоциты расселяются в периферических лимфоидных органах и трансформируются. Т1 — клетки локализуются в периартериальных зонах селезенки, слабо реагируют на действие лучистой энергии и являются предшественниками эффекторов клеточного иммунитета, Т2 — клетки накапливаются в перикортикальных зонах лимфоузлов, высокорадиочувствительны и отличаются антигенреактивностью.

Периферические линфоидные органы и ткани (лимфатические узлы, лимфоидные структуры глоточного кольца, лимфатические протоки и селезенка) — территория взаимодействия зрелых неиммунных лимфоцитов с антигенпрезентирующими клетками (АПК) и последующей антигензависимой дифференцировки (иммуногенеза) лимфоцитов. В эту группу входят: лимфоидная ткань, ассоциированная с кожей); лимфоидная ткань, ассоциированная со слиэистыми оболочками желудочно-кишечного, респираторного и мочеполового трактов (солитарные фолликулы, миндалины, пейеровы бляшки и др.).Пейеровы бляшки (групповые лимфатические фолликулы) — лимфоидные образования стенки тонкой кишки. Антигены проникают из просвета кишки в пейеровы бляшки через эпителиальные клетки (М-клетки).

№6 Т-клетки иммунной системы , их характеристика

T-лимфоциты участвуют в реакциях клеточного иммунитета: аллергических реакциях замедленного типа, реакции отторжения трансплантата и других, обеспечивают противоопухолевый иммунитет. Популяция T-лимфоцитов делится на две субпопуляции: лимфоциты CD4 — T-хелперы и лимфоциты CD8 — цитотоксические T-лимфоциты и T-супрессоры. Помимо этого существуют 2 типа T-хелперов: Th1 и Th2

Т-лимфоциты. Характеристика Т-лимфоцитов. Типы молекул на поверхности Т-лимфоцитов. Решающее событие в развитии Т-лимфоцитов — формирование антигенраспознающего Т-клеточного рецептора — происходит только в тимусе. Для обеспечения возможности распознавания любого антигена нужны миллионы различных по специфичности антигенраспознающих рецепторов. Формирование огромного разнообразия антигенраспознающих рецепторов возможно благодаря перестройке генов в процессе пролиферации и дифференцировки клеток-предшественниц. По мере созревания Т-лимфоцитов на их поверхности появляются ан-тигенраспознающие рецепторы и другие молекулы, опосредующие их взаимодействие с антигенпредставляющими клетками. Так, в распознавании собственных молекул главного комплекса гистосовместимости наряду с Т-клеточным рецептором участвуют молекулы CD4 или CD8. Межклеточные контакты обеспечиваются наборами поверхностных адгезионных молекул, каждой из которых соответствует молекула — лиганд на поверхности другой клетки. Как правило, взаимодействие Т-лимфоцита с антигенпредставляющей клеткой не ограничивается распознаванием антигенного комплекса Т-клеточным рецептором, а сопровождается связыванием других попарно комплементарных поверхностных «костимулирующих» молекул. Таблица 8.2. Типы молекул на поверхности Т-лимфоцитов Молекулы Функции Антигенраспознающий рецептор: Т-клеточный рецептор Распознавание и связывание комплекса: антигенный пептид + собственная молекула главного комплекса гистосовместимости Корецепторы: CD4, CD8 Участвуют в связывании молекулы главного комплекса гистосовместимости Адгезионные молекулы Адгезия лимфоцитов к эндотелиальным клеткам, к антигенпредставляющим клеткам, к элементам внеклеточного матрикса Костимулирующие молекулы Участвуют в активации Т-лимфоцитов после взаимодействия с антигеном Рецепторы иммуноглобулинов Связывают иммунные комплексы Рецепторы цитокинов Связывают цитокины Сочетание поверхностных молекул лимфоцитов, которые принято обозначать порядковыми номерами «кластеров дифференцировки» (clusters of differentiation — CD), обозначается как «поверхностный фенотип клетки», а отдельные поверхностные молекулы называют «маркерами», так как они служат метками конкретных субпопуляций и стадий дифференцировки Т-лимфоцитов. Так, например, на поздних этапах дифференцировки одни Т-лимфоциты утрачивают молекулу CD8 и сохраняют только CD4, а другие утрачивают CD4, а сохраняют CD8. Поэтому среди зрелых Т-лимфоцитов различают CD4+ (Т-хелперы) и CD8+ (цитотоксические Т-лимфоциты). Среди циркулирующих в крови Т-лимфоцитов клеток с маркером CD4 примерно в два раза больше, чем клеток с маркером CD8. Зрелые Т-лимфоциты несут на поверхности рецепторы для разных цитокинов и рецепторы для иммуноглобулинов (табл. 8.2). При распознавании Т-клеточным рецептором антигена Т-лимфоциты получают сигналы активации, пролиферации и дифференцировки в направлении клеток-эффекторов, т. е. клеток, способных непосредственно участвовать в защитных или повреждающих эффектах. Для этого на их поверхности резко возрастает количество адгезионных и костимулирующих молекул, а также рецепторов для цитокинов. Активированные Т-лимфоциты начинают продуцировать и секретировать цитокины, активирующие макрофаги, другие Т-лимфоциты и В-лимфоциты. После завершения инфекции, сопряженной с усиленной продукцией, дифференцировкой и активацией Т-эффекторов соответствующего клона, в течение нескольких дней 90 % эффекторных клеток погибают, поскольку не получают дополнительных сигналов активации. В организме остаются долгоживущие клетки памяти, несущие соответствующие по специфичности рецепторы и способные ответить пролиферацией и активацией на повторную встречу с тем же антигеном.

№7 В-клетки иммунной системы их характеристика

B-лимфоциты составляют около 15-18% всех лимфоцитов, находящихся в периферической крови. После распознавания специфического антигена эти клетки размножаются и дифференцируются, трансформируясь в плазматические клетки. Плазматические клетки вырабатывают большое количество антител (иммуноглобулины Ig), которые являются собственными рецепторами B-лимфоцитов в растворенном виде. Основной компонент иммуноглобулинов Ig (мономер) состоит из 2 тяжелых и 2 легких цепей. Принципиальное отличие между иммуноглобулинами состоит в строении их тяжелых цепей, которые представлены 5 типами (γ, α, µ, δ, ε).

Макрофаги — крупные клетки, образовавшиеся из моноцитов, способные к фагоцитозу.Помимо непосредственно фагоцитоза,

макрофаги принимают участие в сложных процессах имунного ответа, стимулируя лимфоциты и имунные другие клетки.

актически моноцит становится макрофагом, когда покидает сосудистое русло и проникает в ткани.

В зависимости от типа ткани выделяют следующие виды макрофагов.

Гистиоциты — макрофаги соединительной ткани; компонент ретикуло-эндотелиальной системы.

Купферовские клетки — иначе эндотелиальные звездчатые клетки печени.

Альвеолярные макрофаги — иначе, пылевые клетки; расположены в альвеолах.

Эпителиоидные клетки — составляющие гранулемы.

Остеокласты — многоядерные клетки, участвующие в резорбции костной ткани.

Микроглия — клетки центральной нервной системы, разрушающие нейроны и поглощающие инфекционные агенты.

Макрофаги селезенки

функции макрофагов включают в себя фагоцитоз, «обработку» антигенов и взаимодействие с цитокинами.

Неиммунный фагоцитоз: макрофаги способны фагоцитировать чужеродные частицы, микроорганизмы и остатки

поврежденных клеток непосредственно, без вызова иммунного ответа. «Обработка» антигенов:

макрофаги «обрабатывают» антигены и представляют их B- и T-лимфоцитам в необходимой форме.

Взаимодействие с цитокинами: макрофаги взаимодействуют с цитокинами, производимыми T-лимфоцитами

для защиты организма против определенных повреждающих агентов.

9.Кооперация клеток в иммунном ответе.

Патрульные макрофаги, обнаружив в крови чужеродные белки (клетку), предъявляют его Т-хелперам

(происходит процессинг АГ макрофагами). Т-хелперы передают АГ информацию на В-лимфоциты,

которые начинают бласттрансформироваться и пролиферировать, выделять нужный иммуноглобулин.

Меньшая часть Т-хелперов (индукторы) побуждают макрофагов и макрофаги начинают продуцировать

интерлейкин I – активатор основной части Т-хелперов. Те, возбуждаясь, в свою очередь объявляют

всеобщую мобилизацию, начиная бурно выделять интерлейкин II (лимфокин), который ускоряет пролиферацию и

Т-хелперов, и Т-киллеров. Последние имеют специальный рецептор именно к тем белковым детерминантам,

которые были предъявлены патрульными макрофагами.

Т-киллеры устремляются к клеткам-мишеням и разрушают их. Одновременно интерлейкин II

способствует росту и созреванию В-лимфоцитов, которые превращаются в плазматические клетки.

Тот же интерлейкин II вдохнет жизнь в Т-супрессоры, которые замыкают общую реакцию иммунного ответа,

останавливая синтез лимфокинов. Размножение иммунных клеток прекращается, но остаются лимфоциты памяти.

10.Аллергия

Спецефически повышенная чувствительность организма патогенного характера к веществам с антигенными свойствами.

Классификация:

1.реакции гиперчувствительности немедленного типа: развиваются в течении нескольких минут.Участвуют антитела.Терапия-антигистаминовыми препаратами.Болезни-атопическая бронхиальная астма,крапивница,сывороточная болезнь

2.реакции гиперчувствительности замедленного типа:через 4-6часов,симптомы нарастают в течении 1-2суток.Антитела в сыворотке отсутствуют,но имеются лимфоциты,способные с помощью своих рецепторов узнавать антиген.Болезни-бактериальная аллергия,контактный дерматит,реакции отторжения трансплантата.

4типа реауции по джелу и кубсу:

1тип анафилактические реакции:они вызывают взаимодействием поступающих в организм антигенов с антителами(IgE),осевшими на поверхности тучных клеток и базофилов.Происходит активация этих клеток-мишенейюИз них высвобождаются биологичекси активные вещества(гистамин,серотонин).Так развивается анафилаксия,атопическая бронхиальная астма.

2тип цитотоксические: Циркульрующие вкрови антитела взаимодействуют с антигенами,фиксированными на мембранах клеток,В итоге клетки повреждаются и возникает цитолиз.Аутоиммуные гемолитические анемии,гемолитическая болезнь новорожденных.

3тип реакции иммцнных комплексов: циркулирующие вкрови антитела взаимодействуют с циркулир.антигенами,Образующиеся комплексы оседают на стенках кровеносных капилляров,повреждая слосуды.Сывороточная болезнь ежедневных инъукций

4тип клеточно-опосредованные иммунные реакции: они не зависят от наличия антител,а связанны с реакциями тимусзависимых лимфоцитов.Т-лимфоциты повреждают чужеродные клетки.Трансплатата,бактериальная аллергия.

5тип антирецепторные: антитела взаимодействуют с рецепторами гормона на мемране клеток.Это приводит к активации клеток.Болезнб Грейвса(увеличение тиреоидных гормонов)

11.Иммунодифициты

Иммунодефициты — это определенной степени недостаточность или выпадение нормальной функции иммунной системы организма, в результате генетических или другого рода поражений. Генетический анализ выявляет спектр хромосомных аномалий при иммунодефицитах: от делеции хромосом и точечных мутаций до изменения процессов транскрипции и трансляции.

Иммунодефицитные состояния

сопутствуют многие патологические процессы. Единой общепринятой классификации иммунодефицитов не существует. Многие авторы делят иммунодефициты на «первичные» и «вторичные». В основе врожденных форм иммунодефицитов лежит генетический дефект. Основное значение имеют нарушения в хромосомах, прежде всего 14-ой, 18-ой и 20-ой.

В зависимости от того какие эффекторные звенья привели к развитию иммунодефицита, следует различать дефициты специфического и неспецифического звеньев резистентности организма.

Врожденные иммунодефицитные состояния

А. Иммунодефициты специфического звена:

Дефициты Т-клеточного звена:

вариабельные иммунодефициты.

Селективный иммунодефицит по Ir-гену.

Дефициты В-клеточного звена:

Сочетанные иммунодефициты:

Селективные дефициты:

Б. Иммунодефициты неспецифического звена

Дефициты лизоцима.

Дефициты системы комплемента:

Дефициты фагоцитоза.

Иммунодефициты вторичные

Заболевания иммунной системы.

Генерализованные нарушения костного мозга.

Инфекционные заболевания.

Нарушения обмена веществ и интоксикации.

Экзогенные воздействия.

Иммунодефициты при старении.

ВИЧ-инфекция. Вирус иммунодефицита человека (ВИЧ) вызывает инфекционное заболевание, опосредованное первичным поражением вируса иммунной системы, с ярко

выраженным вторичным иммунодефицитом, что обусловливает развитие болезней, вызванных оппортунистическими инфекциями.

ВИЧ имеет тропность к лимфойдной ткани, конкретно к Т-хелперам. ВИЧ-вирус у больных находится в крови, в слюне, семенной жидкости. Поэтому заражение возможно при переливании такой крови, половым путем, вертикальным путем.

Следует отметить, что нарушения клеточного и гуморального звеньев иммунного ответа при СПИДе характеризуются:

а) снижением общего количества Т-лимфоцитов, за счет Т-хелперов

б) сижением функции Т-лимфоцитов,

в) повышением функциональной активности В-лимфоцитов,

г) увеличением количества иммунных комплексов,

л) снижением цитотоксической активности натуральных киллеров,

е) снижением хемотаксиса, цитотоксичности макрофагов, снижении продукции ИЛ-1.

Иммунологические нарушения сопровождаются увеличением альфа-интерферона, появлением антилимфоцитарных антител, супрессивных факторов, снижением тимозина в сыворотке крови, увеличением уровня 2-микроглобулинов.

Возбудителем болезни является человеческий Т-лимфоцитарный вирус

Такие микроорганизмы обычно обитают на коже и слизистой, получившие название резидентной микрофлоры. Заболевание имеет фазовый характер. Период выраженных клинических проявлений получило название синдрома приобретенного иммунодефицита (СПИД).

Опухоль и иммунитет — драматический диалог в трех частях с прологом

Долгое время считалось, что причина низкой эффективности иммунного ответа при раке — то, что опухолевые клетки слишком похожи на нормальные, здоровые, чтобы иммунная система, настроенная на поиск «чужаков», могла их как следует распознавать. Этим как раз и объясняется тот факт, что иммунная система успешнее всего противостоит опухолям вирусной природы (их частота резко возрастает у людей, страдающих иммунодефицитом). Однако позже стало ясно, что это не единственная причина.

Если в этой статье речь идет про иммунные аспекты рака, то в работе «Страшней клешней на свете нет…» можно прочесть про особенности ракового метаболизма. — Ред.

Оказалось, что взаимодействие раковых клеток с иммунной системой носит гораздо более разносторонний характер. Опухоль не просто «прячется» от атак, она умеет активно подавлять местный иммунный ответ и перепрограммировать иммунные клетки, заставляя их обслуживать собственные злокачественные нужды.

«Диалог» между переродившейся, вышедшей из-под контроля клеткой с ее потомством (то есть будущей опухолью) и организмом развивается в несколько стадий, и если вначале инициатива почти всецело находится на стороне защитных сил организма, то в конце (в случае развития болезни) — переходит на сторону опухоли. Несколько лет назад учеными-онкоиммунологами была сформулирована концепция «иммуноредактирования» (immunoediting), описывающая основные этапы этого процесса (рис. 1) .

Рисунок 1. Иммуноредактирование (immunoediting) в процессе развития злокачественной опухоли.

Первая стадия иммуноредактирования — процесс устранения (elimination). Под действием внешних канцерогенных факторов или в результате мутаций нормальная клетка «трансформируется» — приобретает способность неограниченно делиться и не отвечать на регуляторные сигналы организма. Но при этом она, как правило, начинает синтезировать на своей поверхности особые «опухолевые антигены» и «сигналы опасности». Эти сигналы привлекают клетки иммунной системы, прежде всего макрофаги, натуральные киллеры и Т-клетки. В большинстве случаев они успешно уничтожают «испортившиеся» клетки, прерывая развитие опухоли. Однако иногда среди таких «предраковых» клеток оказывается несколько таких, у которых иммунореактивность — способность вызывать иммунный ответ — по каким-то причинам оказывается ослабленной, они синтезируют меньше опухолевых антигенов, хуже распознаются иммунной системой и, пережив первую волну иммунного ответа, продолжают делиться.

В этом случае взаимодействие опухоли с организмом выходит на вторую стадию, стадию равновесия (equilibrium). Здесь иммунная система уже не может полностью уничтожить опухоль, но еще в состоянии эффективно ограничивать ее рост. В таком «равновесном» (и не обнаруживаемом обычными методами диагностики) состоянии микроопухоли могут существовать в организме годами. Однако такие затаившиеся опухоли не статичны — свойства составляющих их клеток постепенно меняются под действием мутаций и последующего отбора: преимущество среди делящихся опухолевых клеток получают такие, которые способны лучше противостоять иммунной системе, и в конце концов в опухоли появляются клетки-иммуносупрессоры. Они в состоянии не только пассивно избегать уничтожения, но и активно подавлять иммунный ответ. По сути, это эволюционный процесс, в котором организм невольно «выводит» именно тот вид рака, который его убьет.

Этот драматический момент знаменует собой переход опухоли к третьей стадии развития — избегания (escape), — на которой опухоль уже малочувствительна к активности клеток иммунной системы, более того — обращает их активность себе на пользу. Она принимается расти и метастазировать. Именно такая опухоль обычно диагностируется медиками и изучается учеными — две предыдущие стадии протекают скрыто, и наши представления о них основаны главным образом на интерпретации целого ряда косвенных данных.

Дуализм иммунного ответа и его значение в канцерогенезе

Существует множество научных статей, описывающих, как иммунная система борется с опухолевыми клетками, но не меньшее количество публикаций демонстрирует, что присутствие клеток иммунной системы в ближайшем опухолевом окружении является негативным фактором, коррелирующим с ускоренным ростом и метастазированием рака , . В рамках концепции иммуноредактирования, описывающей, как изменяется характер иммунного ответа по мере развития опухоли, подобное двойственное поведение наших защитников получило, наконец, свое объяснение.

Переориентирование иммунной системы от борьбы с опухолью на ее защиту возможно благодаря пластичности клеток этой системы. Говоря об иммунном ответе, мы, как правило, используем «воинственные» метафоры — «борьба», «уничтожение», «подавление». Но мало уничтожить врага, будь то вирус, бактерия или другой паразит. Организм должен еще и исправить причиненные им повреждения. Регенерация поврежденных тканей и заживление ран тоже находятся под контролем клеток иммунной системы: она не только «воин», но еще и «целитель». Коварство рака заключается в том, что, будучи по сути «чужеродным агентом» в организме, он выделяет специальные вещества, которые подавляют активный иммунный ответ и побуждают лейкоциты воспринимать опухоль не как врага, требующего уничтожения, а как рану, требующую помощи, защиты и исцеления.

Мы рассмотрим некоторые механизмы того, как это происходит, на примере макрофагов. Похожие приемы опухоль использует и для того, чтобы обманывать другие клетки врожденного и приобретенного иммунитета.

Макрофаги — «клетки-воины» и «клетки-целители»

Макрофаги, пожалуй, самые знаменитые клетки врожденного иммунитета — именно с изучения их способностей к фагоцитозу Мечниковым и началась классическая клеточная иммунология. В организме млекопитающих макрофаги — боевой авангард: первыми обнаруживая врага, они не только пытаются уничтожить его собственными силами, но также привлекают к месту сражения другие клетки иммунной системы, активируя их. А после уничтожения чужеродных агентов принимаются активно участвовать в ликвидации причиненных повреждений, вырабатывая факторы, способствующие заживлению ран. Эту двойственную природу макрофагов опухоли используют себе на пользу.

В зависимости от преобладающей активности различают две группы макрофагов: М1 и М2. М1-макрофаги (их еще называют классически активированными макрофагами) — «воины» — отвечают за уничтожение чужеродных агентов (в том числе и опухолевых клеток), как напрямую, так и за счет привлечения и активации других клеток иммунной системы (например, Т-киллеров). М2 макрофаги — «целители» — ускоряют регенерацию тканей и обеспечивают заживление ран , .

Присутствие в опухоли большого количества М1-макрофагов тормозит ее рост , а в некоторых случаях может вызвать даже практически полную ремиссию (уничтожение). И наоборот: М2-макрофаги выделяют молекулы — факторы роста, которые дополнительно стимулируют деление опухолевых клеток, то есть благоприятствуют развитию злокачественного образования. Экспериментально было показано, что в опухолевом окружении обычно преобладают именно М2-клетки («целители»). Хуже того: под действием веществ, выделяемых опухолевыми клетками, активные М1-макрофаги «перепрограммируются» в М2-тип , перестают синтезировать антиопухолевые цитокины, такие как интерлейкин-12 (IL12) или фактор некроза опухолей (TNF) и начинают выделять в окружающую среду молекулы, ускоряющие рост опухоли и прорастание кровеносных сосудов, которые будут обеспечивать ее питание, например фактор роста опухолей (TGFb) и фактор роста сосудов (VGF). Они перестают привлекать и инициировать другие клетки иммунной системы и начинают блокировать местный (противоопухолевый) иммунный ответ (рис. 2).

Рисунок 2. М1- и М2-макрофаги: их взаимодействие с опухолью и другими клетками иммунной системы.

Ключевую роль в этом перепрограммировании играют белки семейства NF-kB . Эти белки являются транскрипционными факторами, контролирующими активность множества генов, необходимых для М1 активации макрофагов. Наиболее важные представители этого семейства — р65 и р50, вместе образующие гетеродимер р65/р50, который в макрофагах активирует множество генов, связанных с острым воспалительным ответом, таких как TNF, многие интерлейкины, хемокины и цитокины. Экспрессия этих генов привлекает все новые и новые иммунные клетки, «подсвечивая» для них район воспаления. В то же время другой гомодимер семейства NF-kB — р50/р50 — обладает противоположной активностью: связываясь с теми же самыми промоторами, он блокирует их экспрессию, снижая градус воспаления.

И та, и другая активность NF-kB транскрипционных факторов очень важна, но еще важнее равновесие между ними. Было показано, что опухоли целенаправленно выделяют вещества, которые нарушают синтез p65 белка в макрофагах и стимулируют накопление ингибиторного комплекса р50/р50 . Таким способом (помимо еще ряда других) опухоль превращает агрессивных М1-макрофагов в невольных пособников своего собственного развития: М2-тип макрофагов, воспринимая опухоль как поврежденный участок ткани, включают программу восстановления, однако секретируемые ими факторы роста только добавляют ресурсы для роста опухоли. На этом цикл замыкается — растущая опухоль привлекает новые макрофаги, которые перепрограммируются и стимулируют ее рост вместо уничтожения.

Реактивация иммунного ответа — актуальное направление антираковой терапии

Таким образом, в ближайшем окружении опухолей присутствует сложная смесь молекул: как активирующих, так и ингибирующих иммунный ответ. Перспективы развития опухоли (а значит, перспективы выживания организма) зависят от баланса ингредиентов этого «коктейля». Если будут преобладать иммуноактиваторы — значит, опухоль не справилась с задачей и будет уничтожена или ее рост сильно затормозится. Если же преобладают иммуносупрессорные молекулы — это значит, что опухоль смогла подобрать ключ и начнет быстро прогрессировать. Понимая механизмы, которые позволяют опухолям подавлять наш иммунитет, мы сможем разработать контрмеры и сдвинуть баланс в сторону уничтожения опухолей .

Как показывают эксперименты, «перепрограммирование» макрофагов (и других клеток иммунной системы) обратимо. Поэтому одним из перспективных направлений онко-иммунологии на сегодняшний день является идея «реактивации» собственных клеток иммунной системы пациента с целью усиления эффективности других методов лечения. Для некоторых разновидностей опухолей (например, меланом) это позволяет добиться впечатляющих результатов. Другой пример, обнаруженный группой Меджитова , — обычный лактат, молекула, которая производится при недостатке кислорода в быстрорастущих опухолях за счет эффекта Варбурга . Эта простая молекула стимулирует перепрограммирование макрофагов, заставляя их поддерживать рост опухоли. Лактат транспортируется внутрь макрофагов через мембранные каналы, и потенциальная терапия заключается в блокировке этих каналов.

Развитие методов антираковой терапии в настоящее время идет по нескольким направлениям сразу , и все они важны. Ведь научившись управлять иммунным ответом так же эффективно, как это делают злокачественные опухоли, мы сумеем окончательно «переиграть» эту болезнь, которая остается одной из главных причин смертности в России и в мире.

Биомаркеры и биоинформатический анализ — лишь некоторые из таких методов. — Ред.

>Литература>Структура и функционирование экосистем

Структура биоценоза

Различают видовую, пространственную и экологическую структуры биоценоза.

Видовая структура — число видов, образующих данный биоценоз, и соотношение их численности или массы. Другими словами, видовая структура биоценоза определяется видовым разнообразием и количественным соотношением числа видов или их массы между собой.

Пространственная структура — распределение организмов разных видов в пространстве (по вертикали и по горизонтали). Пространственная структура образуется, прежде всего, растительной частью биоценоза. Различают ярусность (вертикальная структура биоценоза) и мозаичность (структура биоценоза по горизонтали).

Экологическая структура — соотношение организмов разных экологических групп. Биоценозы со сходной экологической структурой могут иметь разный видовой состав. Это связано с тем, что одни и те же экологические ниши могут быть заняты сходными по экологии, но далеко не родственными видами. Такие виды называют замещающими, или викарирующими.

Любая популяция занимает определенное местообитание и определенную экологическую нишу. Местообитание — территория, занимаемая популяцией, с комплексом присущих ей экологических факторов. Экологическая ниша — место популяции в природе, включающее не только положение вида в пространстве, но и функциональную роль его в сообществе (например, трофический статус) и его положение относительно абиотических условий существования (температуры, влажности и т.п.). Местообитание — это как бы «адрес» организма, а экологическая ниша — это его «профессия».

Пищевые цепи и сети

Питаясь друг другом, живые организмы образуют цепи питания. Цепь питания — последовательность организмов, по которой передается энергия, заключенная в пище, от ее первоначального источника. Каждое звено цепи называется трофическим уровнем. Первый трофический уровень — продуценты (автотрофные организмы, преимущественно зеленые растения). Второй трофический уровень — консументы I порядка (растительноядные животные). Третий трофический уровень — консументы II порядка (первичные хищники, питающиеся растительноядными животными). Четвертый трофический уровень — консументы III порядка (вторичные хищники, питающиеся плотоядными животными). В пищевой цепи редко бывает больше четырех-пяти трофических уровней. Последний трофический уровень — редуценты (сапротрофные бактерии и грибы). Они осуществляют минерализацию — превращение органических остатков в неорганические вещества.

Различают два типа пищевых цепей:

  1. цепи выедания (или пастбищные) — пищевые цепи, начинающиеся с живых фотосинтезирующих организмов. Например, фитопланктон → зоопланктон → рыбы микрофаги → рыбы макрофаги → птицы ихтиофаги;
  2. цепи разложения (или детритные) — пищевые цепи, начинающиеся с отмерших остатков растений, трупов и экскрементов животных. Например, детрит → детритофаги → хищники микрофаги → хищники макрофаги.

Таким образом, поток энергии, проходящий через экосистему, разбивается как бы на два основных направления. Энергия к консументам поступает через живые ткани растений или через запасы мертвого органического вещества. Цепи выедания преобладают в водных экосистемах, цепи разложения — в экосистемах суши.

В сообществах пищевые цепи сложным образом переплетаются и образуют пищевые сети. В состав пищи каждого вида входит обычно не один, а несколько видов, каждый из которых, в свою очередь, может служить пищей нескольким видам. С одной стороны, каждый трофический уровень представлен многими популяциями разных видов, с другой стороны, многие популяции принадлежат сразу к нескольким трофическим уровням. В результате благодаря сложности пищевых связей выпадение какого-то одного вида часто не нарушает равновесия в экосистеме.

Поток энергии и круговорот веществ в экосистеме

В экосистеме органические вещества синтезируются автотрофами из неорганических веществ. Затем они потребляются гетеротрофами. Выделенные в процессе жизнедеятельности или после гибели организмов (как автотрофов, так и гетеротрофов) органические вещества подвергаются минерализации, т.е. превращению в неорганические вещества. Эти неорганические вещества могут быть вновь использованы автотрофами для синтеза органических веществ. Так осуществляется биологический круговорот веществ.

В то же время энергия не может циркулировать в пределах экосистемы. Поток энергии (передача энергии), заключенной в пище, в экосистеме осуществляется однонаправленно от автотрофов к гетеротрофам.

При передаче энергии с одного трофического уровня на другой большая часть энергии рассеивается в виде тепла (в соответствии со вторым законом термодинамики), и только около 10% от первоначального количества передается по пищевой цепи.

В результате пищевые цепи можно представить в виде экологических пирамид. Различают три основных типа экологических пирамид:

  1. пирамида чисел (пирамида Элтона) отражает уменьшение численности организмов от продуцентов к консументам;
  2. пирамида биомасс показывает изменение биомасс на каждом следующем трофическом уровне: для наземных экосистем пирамида биомасс сужается кверху, для экосистемы океана — имеет перевернутый характер, что связано с быстрым потреблением фитопланктона консументами;
  3. пирамида энергии (продукции) имеет универсальный характер и отражает уменьшение количества энергии, содержащейся в продукции, создаваемой на каждом следующем трофическом уровне.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *